Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Food Res Int ; 160: 111716, 2022 10.
Article in English | MEDLINE | ID: mdl-36076411

ABSTRACT

During deep-frying, a plethora of volatile products is emitted with the fumes. These compounds could act as oil quality indicators and change the indoor air composition leading to health risks for occupants. The presented experiments focus on deep-frying of different tubers in rapeseed oil at different frying temperatures. Here, two scenarios for real-time monitoring of volatile organic compounds (VOCs) using proton transfer reaction mass spectrometry (PTR-MS) were proposed. The first, targeted, involved the application of gas chromatography with a flame ionization detector (GC-FID). The second, omics-inspired, involved the use of solid-phase microextraction (SPME) along with gas chromatography-mass spectrometry (GC-MS) and molecular networking algorithm as a complementary tool to the PTR-MS analysis. In a targeted approach, it was shown that the emission profile of pentanal and hexanal depends on the frying temperature and as the temperature increases, a sudden release of these compounds can be observed in the first minutes of frying. Meanwhile, using an omics-inspired protocol enables finding the relation between 1,4-heptadienal and 2-heptanone, octanal and limonene emissions. Using both approaches it was possible to record real-time changes in emission profiles of various oils' degradation products. It was also observed that the emission profiles of VOCs are strictly related to the frying temperature and the type of fried tuber.


Subject(s)
Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Mass Spectrometry/methods , Protons , Rapeseed Oil , Volatile Organic Compounds/analysis
2.
Molecules ; 26(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672898

ABSTRACT

The research concerns the use of proton transfer reaction mass spectrometer to track real-time emissions of volatile secondary oxidation products released from rapeseed oil as a result of deep-frying of potato cubes. Therefore, it was possible to observe a sudden increase of volatile organic compound (VOC) emissions caused by immersion of the food, accompanied by a sudden release of steam from a potato cube and a decrease of the oil temperature by more than 20 °C. It was possible to identify and monitor the emission of major secondary oxidation products such as saturated and unsaturated aldehydes, namely acrolein, pentanal, 2-hexenal, hexanal, 2-nonenal and 2-decenal. Each of them has an individual release characteristic. Moreover, the impact of different initial frying temperatures on release kinetics was investigated. Subsequently, it was possible to approximate the cumulative emission by a second-degree polynomial (R2 ≥ 0.994). Using the proposed solution made it possible for the first time to observe the impact of the immersion of food in vegetable oil on the early emission of thermal degradation products oil.


Subject(s)
Cooking , Rapeseed Oil/chemistry , Volatile Organic Compounds/analysis , Kinetics , Oxidation-Reduction , Solanum tuberosum/chemistry , Temperature
3.
Anal Bioanal Chem ; 412(25): 6969-6982, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32757063

ABSTRACT

The lack of stringent regulations regarding raw materials for herbal supplements used for medicinal purposes has been a constant challenge in the industry. Ginkgo biloba L. leaf extracts attract consumers because of the supposed positive effect on mental performance and memory. Supplements are produced using dried leaf materials and standardized leaf extracts such as EGb 761. Adulteration of Ginkgo biloba L. plants and extracts are becoming more and more common practice due to economically driven motivation from increasing demand in the market and the high cost of raw materials and production. Reinforcement in quality control (QC) to avoid adulterations is necessary to ensure the efficacy of the supplements. In this study, liquid chromatography-high-resolution mass spectrometry (LC-HRMS) was used with principal component analysis (PCA) as an unsupervised exploratory method to analyze, identify, and evaluate the adulterated Ginkgo biloba L. plant materials and dried leaf extracts using the PCA scores and loadings obtained and compound identification.


Subject(s)
Chromatography, Liquid/methods , Ginkgo biloba/chemistry , Mass Spectrometry/methods , Plant Extracts/chemistry , Plant Leaves/chemistry , Principal Component Analysis , Quality Control
4.
Anal Bioanal Chem ; 407(5): 1505-12, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25471292

ABSTRACT

The method for the determination of acesulfame-K, saccharine, cyclamate, aspartame, sucralose, alitame, neohesperidin dihydrochalcone, neotame and five common steviol glycosides (rebaudioside A, rebaudioside C, steviol, steviolbioside and stevioside) in soft and alcoholic beverages was developed using high-performance liquid chromatography and tandem mass spectrometry with electrospray ionisation (HPLC-ESI-MS/MS). To the best of our knowledge, this is the first work that presents an HPLC-ESI-MS/MS method which allows for the simultaneous determination of all EU-authorised high-potency sweeteners (thaumatin being the only exception) in one analytical run. The minimalistic sample preparation procedure consisted of only two operations; dilution and centrifugation. Linearity, limits of detection and quantitation, repeatability, and trueness of the method were evaluated. The obtained recoveries at three tested concentration levels varied from 97.0 to 105.7%, with relative standard deviations lower than 4.1%. The proposed method was successfully applied for the determination of sweeteners in 24 samples of different soft and alcoholic drinks.


Subject(s)
Beverages/analysis , Chromatography, High Pressure Liquid/methods , Food Additives/chemistry , Glycosides/chemistry , Plant Extracts/chemistry , Stevia/chemistry , Sweetening Agents/chemistry , Tandem Mass Spectrometry/methods , Chromatography, Reverse-Phase/methods
SELECTION OF CITATIONS
SEARCH DETAIL