Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Physiol Plant ; 174(5): e13775, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36050907

ABSTRACT

Drought is one of the main climate threats limiting crop production. Potato is one of the four most important food crop species worldwide and is sensitive to water shortage. The CBP80 gene was shown to affect Arabidopsis and potato responses to drought by regulating the level of microRNA159 and, consequently, the levels of the MYB33 and MYB101 transcription factors (TFs). Here, we show that three MYB TFs, MYB33, MYB65, and MYB101, are involved in plant responses to water shortage. Their downregulation in Arabidopsis causes stomatal hyposensitivity to abscisic acid (ABA), leading to reduced tolerance to drought. Transgenic Arabidopsis and potato plants overexpressing these genes, with a mutated recognition site in miR159, show hypersensitivity to ABA and relatively high tolerance to drought conditions. Thus, the MYB33, MYB65, and MYB101 genes may be potential targets for innovative breeding to obtain crops with relatively high tolerance to drought.


Subject(s)
Arabidopsis Proteins , Arabidopsis , MicroRNAs , Solanum tuberosum , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Droughts , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Abscisic Acid/pharmacology , Gene Expression Regulation, Plant/genetics , MicroRNAs/genetics , Water/metabolism , Signal Transduction/genetics
2.
Planta ; 255(5): 97, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35380306

ABSTRACT

MAIN CONCLUSION: Tuber-omics in potato with the T- and D-types of cytoplasm showed different sets of differentially expressed genes and proteins in response to cold storage. For the first time, we report differences in gene and protein expression in potato (Solanum tuberosum L.) tubers possessing the T- or D-type cytoplasm. Two F1 diploid reciprocal populations, referred to as T and D, were used. The pooling strategy was applied for detection of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in tubers consisting of extreme chip colour after cold storage. RNA and protein bulks were constructed from contrasting phenotypes. We recognized 48 and 15 DEGs for the T and D progenies, respectively. DEPs were identified in the amyloplast and mitochondrial fractions. In the T-type cytoplasm, only 2 amyloplast-associated and 5 mitochondria-associated DEPs were detected. Of 37 mitochondria-associated DEPs in the D-type cytoplasm, there were 36 downregulated DEPs in the dark chip colour bulks. These findings suggest that T- and D-type of cytoplasm might influence sugar accumulation in cold-stored potato tubers in different ways. We showed that the mt/nucDNA ratio was higher in D-possessing tubers after cold storage than in T progeny. For the D-type cytoplasm, the pt/nucDNA ratio was higher for tubers characterized by dark chip colour than for those with light chip colour. Our findings suggest that T- and D-type cytoplasm might influence sugar accumulation in cold-stored potato tubers in different ways.


Subject(s)
Solanum tuberosum , Cold Temperature , Cytoplasm/genetics , Gene Expression Regulation, Plant , Plant Tubers/genetics , Plant Tubers/metabolism , Proteomics , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Transcriptome
3.
BMC Plant Biol ; 21(1): 60, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33482727

ABSTRACT

BACKGROUND: Glycoalkaloids are bioactive compounds that contribute to the defence response of plants against herbivore attack and during pathogenesis. Solanaceous plants, including cultivated and wild potato species, are sources of steroidal glycoalkaloids. Solanum plants differ in the content and composition of glycoalkaloids in organs. In wild and cultivated potato species, more than 50 steroidal glycoalkaloids were recognized. Steroidal glycoalkaloids are recognized as potential allelopathic/phytotoxic compounds that may modify the growth of target plants. There are limited data on the impact of the composition of glycoalkaloids on their phytotoxic potential. RESULTS: The presence of α-solasonine and α-solamargine in potato leaf extracts corresponded to the high phytotoxic potential of the extracts. Among the differentially expressed genes between potato leaf bulks with high and low phytotoxic potential, the most upregulated transcripts in sample of high phytotoxic potential were anthocyanin 5-aromatic acyltransferase-like and subtilisin-like protease SBT1.7-transcript variant X2. The most downregulated genes were carbonic anhydrase chloroplastic-like and miraculin-like. An analysis of differentially expressed proteins revealed that the most abundant group of proteins were those related to stress and defence, including glucan endo-1,3-beta-glucosidase acidic isoform, whose expression level was 47.96× higher in potato leaf extract with low phytotoxic. CONCLUSIONS: The phytotoxic potential of potato leaf extract possessing low glycoalkaloid content is determined by the specific composition of these compounds in leaf extract, where α-solasonine and α-solamargine may play significant roles. Differentially expressed gene and protein profiles did not correspond to the glycoalkaloid biosynthesis pathway in the expression of phytotoxic potential. We cannot exclude the possibility that the phytotoxic potential is influenced by other compounds that act antagonistically or may diminish the glycoalkaloids effect.


Subject(s)
Phytochemicals/metabolism , Plant Extracts/analysis , Proteome , Solanaceous Alkaloids/metabolism , Solanum/genetics , Transcriptome , Chimera , Gene Expression Profiling , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/metabolism , Proteomics , Solanum/chemistry , Solanum/metabolism , Toxins, Biological/metabolism
4.
Plant Biotechnol J ; 18(3): 655-667, 2020 03.
Article in English | MEDLINE | ID: mdl-31397954

ABSTRACT

Potato virus Y (PVY) is a major potato (Solanum tuberosum L.) pathogen that causes severe annual crop losses worth billions of dollars worldwide. PVY is transmitted by aphids, and successful control of virus transmission requires the extensive use of environmentally damaging insecticides to reduce vector populations. Rysto , from the wild relative S. stoloniferum, confers extreme resistance (ER) to PVY and related viruses and is a valuable trait that is widely employed in potato resistance breeding programmes. Rysto was previously mapped to a region of potato chromosome XII, but the specific gene has not been identified to date. In this study, we isolated Rysto using resistance gene enrichment sequencing (RenSeq) and PacBio SMRT (Pacific Biosciences single-molecule real-time sequencing). Rysto was found to encode a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal TIR domain and was sufficient for PVY perception and ER in transgenic potato plants. Rysto -dependent extreme resistance was temperature-independent and requires EDS1 and NRG1 proteins. Rysto may prove valuable for creating PVY-resistant cultivars of potato and other Solanaceae crops.


Subject(s)
Disease Resistance , Genes, Plant , Plant Diseases/virology , Potyvirus/pathogenicity , Solanum tuberosum/immunology , Animals , Aphids/virology , Breeding , NLR Proteins/immunology , Plant Diseases/immunology , Plants, Genetically Modified/virology , Solanum tuberosum/virology
5.
Mol Genet Genomics ; 295(1): 209-219, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31642957

ABSTRACT

The objective of this study was to map the quantitative trait loci (QTLs) for chip color after harvest (AH), cold storage (CS) and after reconditioning (RC) in diploid potato and compare them with QTLs for starch-corrected chip color. Chip color traits AH, CS, and RC significantly correlated with tuber starch content (TSC). To limit the effect of starch content, the chip color was corrected for TSC. The QTLs for chip color (AH, CS, and RC) and the starch-corrected chip color determined with the starch content after harvest (SCAH), after cold storage (SCCS) and after reconditioning (SCRC) were compared to assess the extent of the effect of starch and the location of genetic factors underlying this effect on chip color. We detected QTLs for the AH, CS, RC and starch-corrected traits on ten potato chromosomes, confirming the polygenic nature of the traits. The QTLs with the strongest effects were detected on chromosomes I (AH, 0 cM, 11.5% of variance explained), IV (CS, 43.9 cM, 12.7%) and I (RC, 49.7 cM, 14.1%). When starch correction was applied, the QTLs with the strongest effects were revealed on chromosomes VIII (SCAH, 39.3 cM, 10.8% of variance explained), XI (SCCS, 79.5 cM, 10.9%) and IV (SCRC, 43.9 cM, 10.8%). Applying the starch correction changed the landscape of QTLs for chip color, as some QTLs became statistically insignificant, shifted or were refined, and new QTLs were detected for SCAH. The QTLs on chromosomes I and IV were significant for all traits with and without starch correction.


Subject(s)
Quantitative Trait Loci/genetics , Solanum tuberosum/genetics , Starch/genetics , Chromosome Mapping/methods , Color , Diploidy , Oligonucleotide Array Sequence Analysis/methods , Plant Tubers/genetics
6.
Theor Appl Genet ; 131(11): 2321-2331, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30094457

ABSTRACT

Key message Sen2 gene for potato wart resistance, located on chromosome XI in a locus distinct from Sen1 , provides resistance against eight wart pathotypes, including the virulent ones important in Europe. Synchytrium endobioticum causes potato wart disease imposing severe losses in potato production, and as a quarantine pathogen in many countries, it results in lost trade markets and land for potato cultivation. The resistance to S. endobioticum pathotype 1(D1) is widespread in potato cultivars but new virulent pathotypes appear and the problem re-emerges. To characterize and map a new gene for resistance to potato wart, we used diploid F1 potato population from a cross of potato clone resistant to S. endobioticum pathotype 1(D1) and virulent pathotypes: 2(G1), 6(O1), 8(F1), 18(T1), 2(Ch1), 3(M1) and 39(P1) with a potato clone resistant to pathotype 1(D1) only. The 176 progeny clones were tested for resistance to eight wart pathotypes with a modified Glynne-Lemmerzahl method. Bimodal distributions and co-segregation of resistance in the population show that a single resistance gene, Sen2, underlies the resistance to eight pathotypes. Resistance to pathotype 1(D1) was additionally conferred by the locus Sen1 inherited from both parents. Sen2 was mapped to chromosome XI using DArTseq markers. The genetic and physical distances between Sen1 and Sen2 loci were indirectly estimated at 63 cM and 32 Mbp, respectively. We developed PCR markers co-segregating with the Sen2 locus that can be applied in marker-assisted selection of potatoes resistant to eight important pathotypes of S. endobioticum. Wide spectrum of the Sen2 resistance may be an indication of durability which can be enhanced by the pyramiding of the Sen2 and Sen1 loci as in 61 clones selected within this study.


Subject(s)
Chytridiomycota/pathogenicity , Disease Resistance/genetics , Genes, Plant , Plant Diseases/genetics , Solanum tuberosum/genetics , Genetic Markers , Phenotype , Plant Diseases/microbiology , Solanum tuberosum/microbiology
7.
Plant Cell Rep ; 35(6): 1345-58, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26993327

ABSTRACT

KEY MESSAGE: Using DArT analysis, we demonstrated that all Solanum × michoacanum (+) S. tuberosum somatic hybrids contained all parental chromosomes. However, from 13.9 to 29.6 % of the markers from both parents were lost in the hybrids. Somatic hybrids are an interesting material for research of nucleus-cytoplasm interaction and sources of new nuclear and cytoplasmic combinations. Analyses of genomes of somatic hybrids are essential for studies on genome compatibility between species, its evolution and are important for their efficient exploitation. Diversity array technology (DArT) permits analysis of the composition of nuclear DNA of somatic hybrids. The nuclear genome compositions of 97 Solanum × michoacanum (+) S. tuberosum [mch (+) tbr] somatic hybrids from five fusion combinations and 11 autofused 4x mch were analyzed for the first time based on DArT markers. Out of 5358 DArT markers generated in a single assay, greater than 2000 markers were polymorphic between parents, of which more than 1500 have a known chromosomal location on potato genetic or physical map. DArT markers were distributed along the entire length of 12 chromosomes. We noticed elimination of markers of wild and tbr fusion components. The nuclear genome of individual somatic hybrids was diversified. Mch is a source of resistance to Phytophthora infestans. From 97 mch (+) tbr somatic hybrids, two hybrids and all 11 autofused 4x mch were resistant to P. infestans. The analysis of the structure of particular hybrids' chromosomes indicated the presence of markers from both parental genomes as well as missing markers spread along the full length of the chromosome. Markers specific to chloroplast DNA and mitochondrial DNA were used for analysis of changes within the organellar genomes of somatic hybrids. Random and non-random segregations of organellar DNA were noted.


Subject(s)
Solanum tuberosum/genetics , DNA, Chloroplast/genetics , DNA, Mitochondrial/genetics , DNA, Plant/genetics , Disease Resistance/genetics , Genetic Markers/genetics , Hybridization, Genetic/genetics , Multiplex Polymerase Chain Reaction , Oligonucleotide Array Sequence Analysis/methods
8.
Theor Appl Genet ; 129(1): 131-40, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26467474

ABSTRACT

KEY MESSAGE: Most QTL for leaf sucrose content map to positions that are similar to positions of QTL for tuber starch content in diploid potato. In the present study, using a diploid potato mapping population and Diversity Array Technology (DArT) markers, we identified twelve quantitative trait loci (QTL) for tuber starch content on seven potato chromosomes: I, II, III, VIII, X, XI, and XII. The most important QTL spanned a wide region of chromosome I (42.0­104.6 cM) with peaks at 63 and 84 cM which explained 17.6 and 19.2% of the phenotypic variation, respectively. ADP-glucose pyrophosphorylase (AGPase) is the key enzyme for starch biosynthesis. The gene encoding the large subunit of this enzyme, AGPaseS-a, was localized to chromosome I at 102.3 cM and accounted for 15.2% of the variance in tuber starch content. A more than 100-fold higher expression of this gene was observed in RT-qPCR assay in plants with the marker allele AGPaseS-a1334. This study is the first to report QTL for sucrose content in potato leaves. QTL for sucrose content in leaves were located on eight potato chromosomes: I, II, III, V, VIII, IX, X and XII. In 5-week-old plants, only one QTL for leaf sucrose content was detected after 8 h of darkness; four QTL were detected after 8 h of illumination. In 11-week-old plants, 6 and 3 QTL were identified after dark and light phases, respectively. Of fourteen QTL for leaf sucrose content, eleven mapped to positions that were similar to QTL for tuber starch content. These results provide genetic information for further research examining the relationships between metabolic carbon molecule sources and sinks in potato plants.


Subject(s)
Plant Leaves/chemistry , Plant Tubers/chemistry , Quantitative Trait Loci , Solanum tuberosum/genetics , Starch/chemistry , Sucrose/chemistry , Chromosome Mapping , Cloning, Molecular , Diploidy , Genetic Linkage , Genetic Markers , Glucose-1-Phosphate Adenylyltransferase/genetics , Phenotype , Plant Proteins/genetics , Solanum tuberosum/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL