Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Type of study
Language
Affiliation country
Publication year range
1.
Nutrients ; 12(9)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32825157

ABSTRACT

Although dietary fiber treatment alters the gut microbiota and its metabolite production, it is unclear whether or not exercise habits can have a supplemental effect on changes in gut microbiota in dietary fiber-treated mice. To clarify the supplemental effect of voluntary exercise on gut microbiota in partially hydrolyzed guar gum (PHGG), which is a soluble dietary fiber, treated mice under high-fat diet (HFD) feeding, 4-week-old male C57BL/6J mice (n = 80) were randomly divided into two dietary groups: the control-diet (CD) and HFD. Then, each dietary group was treated with or without PHGG, and with or without wheel running. After the experimental period, measurement of maximal oxygen consumption, a glucose tolerance test and fecal materials collection for analysis of gut microbiota were carried out. Voluntary exercise load in PHGG treatment under HFD feeding showed the supplemental effect of exercise on obesity (p < 0.01) and glucose tolerance (p < 0.01). Additionally, in both CD and HFD groups, voluntary exercise accelerated the decrease in the Firmicutes/Bacteroidetes ratio in mice fed with PHGG (p < 0.01). These findings suggest that voluntary exercise might activate the prevention of obesity and insulin resistance more via change in gut microbiota in mice administrated with PHGG.


Subject(s)
Diet, High-Fat/adverse effects , Dietary Fiber/administration & dosage , Dietary Supplements , Eating/physiology , Galactans/administration & dosage , Gastrointestinal Microbiome , Mannans/administration & dosage , Nutritional Physiological Phenomena/physiology , Obesity/prevention & control , Physical Conditioning, Animal/physiology , Plant Gums/administration & dosage , Animals , Bacteroidetes , Dietary Fiber/pharmacology , Firmicutes , Galactans/pharmacology , Gastrointestinal Microbiome/drug effects , Glucose Tolerance Test , Hydrolysis , Insulin Resistance , Male , Mannans/pharmacology , Mice, Inbred C57BL , Obesity/etiology , Oxygen Consumption , Plant Gums/pharmacology
2.
Biocontrol Sci ; 22(4): 205-211, 2017.
Article in English | MEDLINE | ID: mdl-29279577

ABSTRACT

 The supercooling-facilitating (SCF) activities, that is, the anti-ice nucleation activity of the hot water extracts from five types of processed food refuse was examined. The extract with the highest activity among five hot water extracts was coffee refuse, showing 1.50℃ of SCF activity at a final concentration of 0.1 mg/ml. From the hot water extract of coffee refuse, the coffee refuse extract containing various polyphenols was prepared by the ultrafiltration (less than MWCO 10,000), a solvent fractionation of ethyl acetate. The yield of coffee refuse extract was 0.9% (w/w) from dried coffee refuse. The SCF activity of the coffee refuse extract at a final concentration of 1.0 mg/ml was 4.2℃. HPLC analysis of the coffee refuse extract showed that caffeine and chlorogenic acid, which are major components of coffee, could be found at 173 and 62.3 µg/ml, respectively. However, the SCF activities of both compounds (0.70 and 1.06℃) at a final concentration of 0.1 mg/ml were lower than those of ferulic acid and coumaric acid, respectively at 3.40 and 2.35℃. This is the first report to our knowledge on the SCF activity of caffeine. The SCF activity of caffeine at a final concentration of 1.0 mg/ml was 2.3℃. The specificity of caffeine against various ice nuclei containing calcium oxalate, 9-fluorenon, and ice nucleating bacteria was examined. Caffeine at a final concentration of 1.0 mg/ml could inhibit the ice nucleation activity of calcium oxalate, and Pseudomonas fluorescens KUIN-1 at the same level that of as silver iodide. From these results, it was suggested that the extract could be able to be applied to the field to control the frost damage of the vegetables and that the harvested vegetables might be stored unfrozen even at 0℃ or less.


Subject(s)
Coffee/chemistry , Plant Extracts/chemistry , Caffeine/chemistry , Chromatography, High Pressure Liquid , Hot Temperature , Plant Extracts/pharmacology , Water
SELECTION OF CITATIONS
SEARCH DETAIL