Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Muscle Res Cell Motil ; 43(3): 147-156, 2022 09.
Article in English | MEDLINE | ID: mdl-35854160

ABSTRACT

Eccentric contraction (ECC) often results in large and long-lasting force deficits accompanied by muscle soreness, primarily due to muscle damage. In this sense, exercises that involve ECC are less desirable. Paradoxically, exercise training that includes a substantial eccentric phase leads to a more powerful activation of the genes responsible for skeletal muscle remodeling (e.g., hypertrophy) than other types of training that emphasize a concentric or isometric phase. Therefore, effective strategies that lessen ECC-induced muscle damage will be of interest and importance to many individuals. The purpose of this brief review is to highlight the published literature on the effects of ECC and/or nutritional supplementations on proteins, lipids, metabolic and ionic changes, and enzyme activities in skeletal muscles subjected to an acute bout of ECC. First, we discuss the potential mechanisms by which ECC causes muscle damage. Previous findings implicate a Ca2+ overload-oxidative modification pathway as one possible mechanism contributing to muscle damage. Thereafter, the efficacy of two nutritional supplementations, i.e., L-arginine and antioxidant, is discussed because L-arginine and antioxidant would be expected to ameliorate the adverse effects of Ca2+ overload and oxidative modification, respectively. Of these, L-arginine ingestion before ECC seems likely to be the effective strategy for mitigating ECC-related proteolysis. More studies are needed to establish the effectiveness of antioxidant ingestion. The application of effective strategies against muscle damage may contribute to improvements in health and fitness, muscle function, and sports performance.


Subject(s)
Antioxidants , Muscle Contraction , Arginine , Dietary Supplements , Humans , Muscle, Skeletal
2.
J Physiol ; 599(18): 4337-4356, 2021 09.
Article in English | MEDLINE | ID: mdl-34368970

ABSTRACT

KEY POINTS: We investigated the mechanisms underlying faster force recovery from eccentric contractions (ECCs) in female than in male mice, focusing on mitochondrial responses. At 3 days after repeated ECCs (REC3), female mice showed faster recovery from ECC-induced force depression than male mice. At REC3, the mitochondria in females displayed superior responses to those in males: (i) mitochondrial Ca2+ uniporter content of muscles at REC3 was higher than that of rested muscles in females, and (ii) mitochondrial volume density in females was higher than that in males at REC3. Ovariectomized (OVX) female mice showed lower mitochondrial responses at REC3, similar to those observed in male mice, but oestrogen replacement nullified such lower responses in OVX. We concluded that: (i) superior mitochondrial responses after ECCs, at least in part, cause faster force recovery from ECCs in females than in males, and (ii) oestrogen contributes to such superior responses in the mitochondria in females. ABSTRACT: The purpose of this study was to investigate the mechanisms underlying sex differences in force recovery after eccentric contractions (ECCs). The left limbs of female and male mice were exposed to repeated ECCs (five sets of 50 contractions) elicited in vivo in the plantar flexor muscles. Isometric torques were measured before, immediately and at 3 days after ECCs (REC3), and gastrocnemius muscles obtained at REC3 were used for biochemical and morphological analyses. At REC3, a greater torque depression at 40 Hz was observed in males than females. Additionally, the following differences were observed at REC3: (i) in males but not females, triad structure was distorted, (ii) mitochondrial Ca2+ uniporter (MCU) content was increased in females but not in males, and (iii) mitochondrial volume density at REC3 was lower in males than in females. To examine the contribution of oestrogen to torque recovery, female mice were assigned to sham-operated (Sham), ovariectomized (OVX) and OVX treated with 17ß-oestradiol (OVX + E2) groups. At REC3, (i) greater torque depression at 40 Hz was observed in the OVX group than in the Sham and OVX + E2 groups, (ii) MCU content was increased in the Sham and OVX + E2 groups but not the OVX group, and (iii) mitochondrial volume density at REC3 was lower in the OVX group than the Sham and OVX + E2 groups. These results suggest that faster force recovery in females than in males is, at least partly, ascribable to superior mitochondrial responses, and oestrogen supplementation, in part, enhances such responses.


Subject(s)
Muscle Contraction , Muscle, Skeletal , Animals , Estradiol/pharmacology , Estrogens , Female , Male , Mice , Torque
3.
Physiol Rep ; 6(17): e13853, 2018 09.
Article in English | MEDLINE | ID: mdl-30175495

ABSTRACT

The aim of this study was to examine whether thermal pretreatment can accelerate recovery from prolonged low-frequency force depression. The hindlimbs of thermal treated (T-treated) rats were immersed in water heated to 42.0°C for 20 min (thermal pretreatment). The thermal pretreatment was performed once a day for 5 days before fatiguing stimulation. Intact gastrocnemius muscles were electrically stimulated via the sciatic nerve until force was reduced to ~50% of the initial and dissected immediately [recovery 0 (REC0)] or 60 min [recovery 60 (REC60)] following the cessation of stimulation. Using skinned fiber prepared from the superficial region, the ratio of force at 1 Hz to that at 50 Hz (low-to-high force ratio), the ratio of depolarization (depol)-induced force to maximum Ca2+ -activated force (depol/max Ca2+ force ratio), the steepness of force-Ca2+ concentration curves, and myofibrillar Ca2+ sensitivity were measured. At REC0, the low-to-high force ratio and depol/max Ca2+ force ratio decreased in stimulated muscles from both non- and thermal-treated rats. At REC60, these two parameters remained depressed in non-treated rats, whereas they reverted to resting levels in T-treated rats. Thermal pretreatment exerted no effect on myofibrillar Ca2+ sensitivity. The present results reveal that thermal pretreatment can facilitate recovery of submaximum force after vigorous contraction, which is mediated via a quick return of Ca2+ release from the sarcoplasmic reticulum to resting levels.


Subject(s)
Hyperthermia, Induced/methods , Muscle Fatigue , Muscle Fibers, Fast-Twitch/physiology , Recovery of Function , Animals , Calcium Signaling , Cells, Cultured , Immersion , Male , Muscle Contraction , Muscle Fibers, Fast-Twitch/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL