Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Kidney Int Rep ; 8(8): 1496-1505, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37547514

ABSTRACT

Introduction: Patients with chronic kidney disease (CKD) are often iron deficient, even when not anemic. This trial evaluated whether iron supplementation enhances exercise capacity of nonanemic patients with CKD who have iron-deficiency. Methods: Prospective, multicenter double-blind randomized controlled trial of nondialysis patients with CKD and iron-deficiency but without anemia (Hemoglobin [Hb] >110 g/l). Patients were assigned 1:1 to intravenous (IV) iron therapy, or placebo. An 8-week exercise program commenced at week 4. The primary outcome was the mean between-group difference in 6-minute walk test (6MWT) at 4 weeks. Secondary outcomes included 6MWT at 12 weeks, transferrin saturation (TSAT), serum ferritin (SF), Hb, renal function, muscle strength, functional capacity, quality of life, and adverse events at baseline, 4 weeks, and at 12 weeks. Mean between-group differences were analyzed using analysis of covariance models. Results: Among 75 randomized patients, mean (SD) age for iron therapy (n = 37) versus placebo (n = 38) was 54 (16) versus 61 (12) years; estimated glomerular filtration rate (eGFR) (34 [12] vs. 35 [11] ml/min per 1.73 m2], TSAT (23 [12] vs. 21 [6])%; SF (57 [64] vs. 62 [33]) µg/l; Hb (122.4 [9.2] vs. 127 [13.2] g/l); 6MWT (384 [95] vs. 469 [142] meters) at baseline, respectively. No significant mean between-group difference was observed in 6MWT distance at 4 weeks. There were significant increases in SF and TSAT at 4 and 12 weeks (P < 0.02), and Hb at 12 weeks (P = 0.009). There were no between-group differences in other secondary outcomes and no adverse events attributable to iron therapy. Conclusion: This trial did not demonstrate beneficial effects of IV iron therapy on exercise capacity at 4 weeks. A larger study is needed to confirm if IV iron is beneficial in nondialysis patients with CKD who are iron-deficient.

2.
BMC Nephrol ; 23(1): 268, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896969

ABSTRACT

BACKGROUND: Many people living with chronic kidney disease (CKD) are iron deficient, even though they may not be anaemic. The Iron and Muscle study aims to evaluate whether iron supplementation reduces symptoms of fatigue, improves muscle metabolism, and leads to enhanced exercise capacity and physical function. We report here the trial design and baseline characteristics. METHODS: This is a prospective, double-blind multicentre randomised controlled trial (RCT) including 75 non-dialysis stage 3-4 CKD patients with iron deficiency but without anaemia. Patients were randomly (1:1) assigned to either: i) intravenous iron therapy, or ii) placebo, with concurrent recruitment of eight CKD non-iron deficient participants and six healthy volunteers. The primary outcome of the study is the six-minute walk test (6MWT) distance between baseline and four-weeks. An additional exercise training programme for patients in both groups was initiated and completed between 4 and 12 weeks, to determine the effect of iron repletion compared to placebo treatment in the context of patients undertaking an exercise programme. Additional secondary outcomes include fatigue, physical function, muscle strength, muscle metabolism, quality of life, resting blood pressure, clinical chemistry, safety and harms associated with the iron therapy intervention and the exercise training intervention, and hospitalisations. All outcomes were conducted at baseline, 4, and 12 weeks, with a nested qualitative study, to investigate the experience of living with iron deficiency and intervention acceptability. The cohort have been recruited and baseline assessments undertaken. RESULTS: Seventy-five individuals were recruited. 44% of the randomised cohort were male, the mean (SD) age was 58 (14) years, and 56% were White. Body mass index was 31 (7) kg/m2; serum ferritin was 59 (45) µg/L, transferrin saturation was 22 (10) %, and haemoglobin was 125 (12) g/L at randomisation for the whole group. Estimated glomerular filtration rate was 35 (12) mL/min/1.73 m2 and the baseline 6MWT distance was 429 (174) m. CONCLUSION: The results from this study will address a substantial knowledge gap in the effects of intravenous iron therapy, and offer potential clinical treatment options, to improve exercise capacity, physical function, fatigue, and muscle metabolism, for non-dialysis patients with CKD who are iron-deficient but not anaemic. It will also offer insight into the potential novel effects of an 8-week exercise training programme. TRIAL REGISTRATION: EudraCT: 2018-000,144-25 Registered 28/01/2019.


Subject(s)
Anemia , Iron Deficiencies , Renal Insufficiency, Chronic , Dietary Supplements , Double-Blind Method , Exercise Tolerance , Fatigue , Female , Humans , Male , Middle Aged , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Treatment Outcome
3.
Molecules ; 27(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35163921

ABSTRACT

(-)-Epigallocatechin gallate (EGCG) and tuna oil (TO) are beneficial bioactive compounds. EGCG, TO or a combination of, delivered by broccoli by-products (BBP), were added to an in vitro anaerobic fermentation system containing human fecal inocula to examine their ability to generate short-chain fatty acids (SCFA), metabolize EGCG and change the gut microbiota population (assessed by 16 S gene sequencing). Following 24 h fermentation, EGCG was hydrolyzed to (-)-epigallocatechin and gallic acid. EGCG significantly inhibited the production of SCFA (p < 0.05). Total SCFA in facal slurries with BBP or TO-BBP (48-49 µmol/mL) were significantly higher (p < 0.05) than the negative control with cellulose (21 µmol/mL). EGCG-BBP and TO-EGCG-BBP treatment increased the relative abundance of Gluconacetobacter, Klebsiella and Trabulsiella. BBP and TO-BBP showed the greatest potential for improving gut health with the growth promotion of high butyrate producers, including Collinsella aerofaciens, Bacillus coagulans and Lactobacillus reuteri.


Subject(s)
Catechin/analogs & derivatives , Fatty Acids, Volatile/metabolism , Feces/chemistry , Fish Oils/administration & dosage , Gastrointestinal Microbiome , Phenols/metabolism , Plant Extracts/pharmacology , Animals , Brassica/chemistry , Catechin/administration & dosage , Drug Therapy, Combination , Feces/microbiology , Humans , In Vitro Techniques , Tuna/growth & development
4.
BMC Nephrol ; 22(1): 250, 2021 07 05.
Article in English | MEDLINE | ID: mdl-34225671

ABSTRACT

BACKGROUND: Taurine depletion occurs in patients with end-stage chronic kidney disease (CKD). In contrast, in the absence of CKD, plasma taurine is reported to increase following dietary L-glutamine supplementation. This study tested the hypothesis that taurine biosynthesis decreases in a rat CKD model, but is rectified by L-glutamine supplementation. METHODS: CKD was induced by partial nephrectomy in male Sprague-Dawley rats, followed 2 weeks later by 2 weeks of 12% w/w L-glutamine supplemented diet (designated NxT) or control diet (NxC). Sham-operated control rats (S) received control diet. RESULTS: Taurine concentration in plasma, liver and skeletal muscle was not depleted, but steady-state urinary taurine excretion (a measure of whole-body taurine biosynthesis) was strongly suppressed (28.3 ± 8.7 in NxC rats versus 78.5 ± 7.6 µmol/24 h in S, P < 0.05), accompanied by reduced taurine clearance (NxC 0.14 ± 0.05 versus 0.70 ± 0.11 ml/min/Kg body weight in S, P < 0.05). Hepatic expression of mRNAs encoding key enzymes of taurine biosynthesis (cysteine sulphinic acid decarboxylase (CSAD) and cysteine dioxygenase (CDO)) showed no statistically significant response to CKD (mean relative expression of CSAD and CDO in NxC versus S was 0.91 ± 0.18 and 0.87 ± 0.14 respectively). Expression of CDO protein was also unaffected. However, CSAD protein decreased strongly in NxC livers (45.0 ± 16.8% of that in S livers, P < 0.005). L-glutamine supplementation failed to rectify taurine biosynthesis or CSAD protein expression, but worsened CKD (proteinuria in NxT 12.5 ± 1.2 versus 6.7 ± 1.5 mg/24 h in NxC, P < 0.05). CONCLUSION: In CKD, hepatic CSAD is depleted and taurine biosynthesis impaired. This is important in view of taurine's reported protective effect against cardio-vascular disease - the leading cause of death in human CKD.


Subject(s)
Carboxy-Lyases/metabolism , Dietary Supplements , Glutamine/administration & dosage , Liver/enzymology , Renal Insufficiency, Chronic/metabolism , Taurine/biosynthesis , Animals , Cysteine Dioxygenase/metabolism , Disease Models, Animal , Humans , Liver/metabolism , Male , Muscle, Skeletal/metabolism , Nephrectomy , Proteinuria , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/diet therapy , Taurine/metabolism
5.
J Steroid Biochem Mol Biol ; 210: 105861, 2021 06.
Article in English | MEDLINE | ID: mdl-33675951

ABSTRACT

BACKGROUND: Evidence is growing for a role of vitamin D in regulating skeletal muscle mass, strength and functional capacity. Given the role the kidneys play in activating total vitamin D, and the high prevalence of vitamin D deficiency in Chronic Kidney Disease (CKD), it is possible that deficiency contributes to the low levels of physical function and muscle mass in these patients. METHODS: This is a secondary cross-sectional analysis of previously published interventional study, with in vitro follow up work. 34 CKD patients at stages G3b-5 (eGFR 25.5 ± 8.3 mL/min/1.73m2; age 61 ± 12 years) were recruited, with a sub-group (n = 20) also donating a muscle biopsy. Vitamin D and associated metabolites were analysed in plasma by liquid chromatography tandem-mass spectroscopy and correlated to a range of physiological tests of muscle size, function, exercise capacity and body composition. The effects of 1α,25(OH)2D3 supplementation on myogenesis and myotube size was investigated in primary skeletal muscle cells from vitamin D deficient donors. RESULTS: In vivo, there was no association between total or active vitamin D and muscle size or strength, but a significant correlation with V̇O2Peak was seen with total vitamin D (25OHD). in vitro, 1α,25(OH)2D3 supplementation reduced IL-6 mRNA expression, but had no effect upon proliferation, differentiation or myotube diameter. CONCLUSIONS: Vitamin D deficiency is not a prominent factor driving the loss of muscle mass in CKD, but may play a role in reduced exercise capacity.


Subject(s)
Exercise Tolerance/physiology , Renal Insufficiency, Chronic/physiopathology , Vitamin D Deficiency/physiopathology , Aged , Calcitonin/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cross-Sectional Studies , Female , Gene Expression , Humans , Male , Middle Aged , Muscle Strength/physiology , Muscle, Skeletal/physiopathology , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/metabolism , Renal Insufficiency, Chronic/complications , Vitamin D/blood , Vitamin D/metabolism , Vitamin D Deficiency/etiology
6.
Angew Chem Int Ed Engl ; 60(10): 5348-5356, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33345438

ABSTRACT

Blood feeding arthropods, such as leeches, ticks, flies and mosquitoes, provide a privileged source of peptidic anticoagulant molecules. These primarily operate through inhibition of the central coagulation protease thrombin by binding to the active site and either exosite I or exosite II. Herein, we describe the rational design of a novel class of trivalent thrombin inhibitors that simultaneously block both exosites as well as the active site. These engineered hybrids were synthesized using tandem diselenide-selenoester ligation (DSL) and native chemical ligation (NCL) reactions in one-pot. The most potent trivalent inhibitors possessed femtomolar inhibition constants against α-thrombin and were selective over related coagulation proteases. A lead hybrid inhibitor possessed potent anticoagulant activity, blockade of both thrombin generation and platelet aggregation in vitro and efficacy in a murine thrombosis model at 1 mg kg-1 . The rational engineering approach described here lays the foundation for the development of potent and selective inhibitors for a range of other enzymatic targets that possess multiple sites for the disruption of protein-protein interactions, in addition to an active site.


Subject(s)
Anticoagulants/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Salivary Proteins and Peptides/therapeutic use , Thrombosis/drug therapy , Amblyomma/chemistry , Animals , Anopheles/chemistry , Anticoagulants/chemical synthesis , Anticoagulants/metabolism , Catalytic Domain , Humans , Male , Mice, Inbred C57BL , Platelet Aggregation Inhibitors/chemical synthesis , Platelet Aggregation Inhibitors/metabolism , Protein Binding , Protein Engineering , Salivary Proteins and Peptides/chemical synthesis , Salivary Proteins and Peptides/metabolism , Thrombin/chemistry , Thrombin/metabolism , Tsetse Flies/chemistry
7.
J Biomed Mater Res A ; 107(9): 1867-1874, 2019 09.
Article in English | MEDLINE | ID: mdl-30882993

ABSTRACT

Cutaneous fungal infection is a challenging condition to treat that primarily afflicts immunocompromised patients. Local antifungal therapy may permit the delivery of high concentrations of antifungals directly to wounds while minimizing systemic toxicities. However, the field currently lacks suitable in vivo models. Therefore, a large cutaneous wound was created in immunosuppressed mice and inoculated with Aspergillus fumigatus. We fabricated biodegradable polymer microparticles (MPs) that were capable of locally delivering antifungal and characterized in vitro release kinetics. We compared wound bed size, fungal burden, and histological presence of fungi in mice treated with antifungal-loaded MPs. Mice with a cutaneous defect but no infection, mice with infected cutaneous defect but no treatment, and infected mice treated with blank MPs were used as controls. Infection of large wounds inhibited healing and resulted in tissue invasion in an inoculum-dependent manner. MPs were capable of releasing antifungals at concentrations above A. fumigatus Minimum Inhibitory Concentration (MIC) for at least 6 days. Wounds treated with MPs had significantly decreased size compared with no treatment (64.2% vs. 19.4% wound reduction, p = 0.002) and were not significantly different from uninfected controls (64.2% vs. 58.1%, p = 0.497). This murine model may serve to better understand cutaneous fungal infection and evaluate local biomaterials-based therapies. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1867-1874, 2019.


Subject(s)
Antifungal Agents , Aspergillosis/drug therapy , Aspergillus fumigatus/metabolism , Dermatomycoses/drug therapy , Drug Delivery Systems , Wound Infection/drug therapy , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Antifungal Agents/pharmacology , Aspergillosis/metabolism , Aspergillosis/pathology , Biocompatible Materials/pharmacokinetics , Biocompatible Materials/pharmacology , Dermatomycoses/metabolism , Dermatomycoses/pathology , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Mice , Mice, Inbred BALB C , Wound Infection/metabolism , Wound Infection/pathology
SELECTION OF CITATIONS
SEARCH DETAIL