Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
Eur Geriatr Med ; 13(6): 1343-1355, 2022 12.
Article in English | MEDLINE | ID: mdl-36385690

ABSTRACT

PURPOSE: Infections cause considerable care home morbidity and mortality. Nitric oxide (NO) has broad-spectrum anti-viral, bacterial and yeast activity in vitro. We assessed the feasibility of supplementing dietary nitrate (NO substrate) intake in care home residents. METHODS: We performed a cluster-randomised placebo-controlled trial in UK residential and nursing care home residents and compared nitrate containing (400 mg) versus free (0 mg daily) beetroot juice given for 60 days. Outcomes comprised feasibility of recruitment, adherence, salivary and urinary nitrate, and ordinal infection/clinical events. RESULTS: Of 30 targeted care homes in late 2020, 16 expressed interest and only 6 participated. 49 residents were recruited (median 8 [interquartile range 7-12] per home), mean (standard deviation) age 82 (8) years, with proxy consent 41 (84%), advance directive for hospital non-admission 8 (16%) and ≥ 1 doses of COVID-19 vaccine 37 (82%). Background dietary nitrate was < 30% of acceptable daily intake. 34 (76%) residents received > 50% of juice. Residents randomised to nitrate vs placebo had higher urinary nitrate levels, median 50 [18-175] v 18 [10-50] mg/L, difference 25 [0-90]. Data paucity precluded clinical between-group comparisons; the outcome distribution was as follows: no infection 32 (67%), uncomplicated infection 0, infection requiring healthcare support 11 (23%), all-cause hospitalisation 5 (10%), all-cause mortality 0. Urinary tract infections were most common. CONCLUSIONS: Recruiting UK care homes during the COVID-19 pandemic was partially successful. Supplemented dietary nitrate was tolerated and elevated urinary nitrate. Together, infections, hospitalisations and deaths occurred in 33% of residents over 60 days. A larger trial is now required. TRIAL REGISTRATION: ISRCTN51124684. Application date 7/12/2020; assignment date 13/1/2021.


Subject(s)
Beta vulgaris , COVID-19 , Humans , Aged, 80 and over , COVID-19/epidemiology , Nitrates/therapeutic use , Pandemics , Feasibility Studies , COVID-19 Vaccines , Dietary Supplements , Nitrogen Oxides
3.
Br J Clin Pharmacol ; 87(12): 4726-4736, 2021 12.
Article in English | MEDLINE | ID: mdl-33982797

ABSTRACT

AIMS: To test if 6 months' intervention with dietary nitrate and spironolactone could affect carotid subclinical atherosclerosis and stiffness, respectively, vs. placebo/doxazosin, to control for blood pressure (BP). METHODS: A subgroup of participants in our double-blind, randomized-controlled, factorial VaSera trial had carotid imaging. Patients with hypertension and with/at risk of type 2 diabetes were randomized to active nitrate-containing beetroot juice or placebo nitrate-depleted juice, and spironolactone or doxazosin. Vascular ultrasound for carotid diameter (CD, mm) and intima-media thickness (CIMT, mm) was performed at baseline, 3- and 6-months. Carotid local stiffness (CS, m/s) was estimated from aortic pulse pressure (Arteriograph) and carotid lumen area. Data were analysed by modified intention to treat and using mixed-model effect, adjusted for confounders. RESULTS: In total, 93 subjects had a baseline evaluation and 86% had follow-up data. No statistical interactions occurred between the juice and drug arms and BP was similar between the juices and between the drugs. Nitrate-containing vs. placebo juice significantly lowered CIMT (-0.06 [95% confidence interval -0.12, -0.01], P = .034), an overall difference of ~8% relative to baseline; but had no effect on CD or CS. Doxazosin appeared to reduce CS from baseline (-0.34 [-0.62, -0.06]) however, no difference was detected vs. spironolactone (-0.15 [-0.46, 0.16]). No differences were detected between spironolactone or doxazosin on CIMT and CD. CONCLUSIONS: Our results show that 6 months' intervention with dietary nitrate influences vascular remodelling, but not carotid stiffness or diameter. Neither spironolactone nor doxazosin had a BP-independent effect on carotid structure and function.


Subject(s)
Atherosclerosis , Beta vulgaris , Diabetes Mellitus, Type 2 , Atherosclerosis/drug therapy , Beta vulgaris/chemistry , Blood Pressure , Carotid Intima-Media Thickness , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Double-Blind Method , Humans , Nitrates
4.
Br J Clin Pharmacol ; 87(2): 577-587, 2021 02.
Article in English | MEDLINE | ID: mdl-32520418

ABSTRACT

AIMS: Dietary nitrate from sources such as beetroot juice lowers blood pressure (BP) via the nitrate-nitrite-nitric oxide (NO) pathway. However, NO and nitrite are inactivated via reoxidation to nitrate, potentially limiting their activity. Cytochrome P450-3A4 inhibition with troleandomycin prevents nitrite re-oxidation to nitrate in rodent liver. Grapefruit juice contains the CYP3A4 inhibitor furanocoumarin. We therefore hypothesized that grapefruit juice would enhance BP-lowering with beetroot juice by maintaining circulating [nitrite]. METHODS: We performed a randomized, placebo-controlled, 7-hour crossover study in 11 healthy volunteers, attending on 3 occasions, receiving: a 70-mL shot of active beetroot juice (Beet-It) and either (i) 250 mL grapefruit juice (Active Beet+GFJ), or (ii) 250 mL water (Buxton, Active Beet+H2 O); or (iii) Placebo Beet+GFJ. RESULTS: The addition of grapefruit juice to active beetroot juice lowered systolic BP (SBP): Active Beet+GFJ vs Active Beet+H2 O (P = .02), and pulse pressure, PP (P = .0003). Peak mean differences in SBP and PP were seen at T = 5 hours: -3.3 mmHg (95% confidence interval [CI] -6.43 to -0.15) and at T = 2.5 hours: -4.2 mmHg (95% CI -0.3 to -8.2), respectively. Contrary to the hypothesis, plasma [nitrite] was lower with Active Beet+GFJ vs Active Beet+H2 O (P = .006), as was salivary nitrite production (P = .002) and saliva volume (-0.34 mL/min [95% CI -0.05 to -0.68]). The taste score of Beet+GFJ was 1.4/10 points higher than Beet+H2 O (P = .03). CONCLUSION: Grapefruit juice enhanced beetroot juice's effect on lowering SBP and PP despite decreasing plasma [nitrite]. Besides suggesting more complex mechanisms, there is potential for maximising the clinical benefit of dietary nitrate and targeting isolated systolic hypertension.


Subject(s)
Beta vulgaris , Citrus paradisi , Blood Pressure , Cross-Over Studies , Dietary Supplements , Fruit and Vegetable Juices , Nitrates
5.
Br J Clin Pharmacol ; 86(5): 891-902, 2020 05.
Article in English | MEDLINE | ID: mdl-31833569

ABSTRACT

AIMS: To test if spironolactone or dietary nitrate from beetroot juice could reduce arterial stiffness as aortic pulse wave velocity (PWVart), a potential treatment target, independently of blood pressure. METHODS: Daily spironolactone (≤50 mg) vs doxazosin (control ≤16 mg) and 70 mL beetroot juice (Beet-It ≤11 mmol nitrate) vs nitrate-depleted juice (placebo; 0 mmol nitrate) were tested in people at risk or with type-2 diabetes using a double-blind, 6-month factorial trial. Vascular indices (baseline, 12, 24 weeks) were cardiac-ankle vascular index (CAVI), a nominally pressure-independent stiffness measure (primary outcome), PWVart secondary, central systolic pressure and augmentation. Analysis was intention-to-treat, adjusted for systolic pressure differences between trial arms. RESULTS: Spironolactone did not reduce stiffness, with evidence for reduced CAVI on doxazosin rather than spironolactone (mean difference [95% confidence interval]; 0.25 [-0.3, 0.5] units, P = .080), firmer for PWVart (0.37 [0.01, 0.7] m/s, P = .045). There was no difference in systolic pressure reduction between spironolactone and doxazosin (0.7 [-4.8, 3.3] mmHg, P = .7). Circulating nitrate and nitrite increased on active vs placebo juice, with central systolic pressure lowered -2.6 [-4.5, - 0.8] mmHg, P = .007 more on the active juice, but did not reduce CAVI, PWVart or peripheral pressure. Change in nitrate and nitrite concentrations were 1.5-fold [1.1-2.2] and 2.2-fold [1.3, 3.6] higher on spironolactone than on doxazosin respectively; both P < .05. CONCLUSION: Contrary to our hypothesis, in at-risk/type 2 diabetes patients, spironolactone did not reduce arterial stiffness, rather PWVart was lower on doxazosin. Dietary nitrate elevated plasma nitrite, selectively lowering central systolic pressure, observed previously for nitrite.


Subject(s)
Beta vulgaris , Diabetes Mellitus, Type 2 , Nitrates , Spironolactone , Vascular Stiffness , Adult , Aged , Blood Pressure , Dietary Supplements , Double-Blind Method , Female , Humans , Male , Middle Aged , Nitrates/therapeutic use , Pulse Wave Analysis , Spironolactone/therapeutic use , Vascular Stiffness/drug effects
6.
Br J Clin Pharmacol ; 85(7): 1443-1453, 2019 07.
Article in English | MEDLINE | ID: mdl-30845346

ABSTRACT

AIMS: Dietary inorganic nitrate (NO3- ) lowers peripheral blood pressure (BP) in healthy volunteers, but lacks such effect in individuals with, or at risk of, type 2 diabetes mellitus (T2DM). Whilst this is commonly assumed to be a consequence of chronic hyperglycaemia/hyperinsulinaemia, we hypothesized that acute physiological elevations in plasma [glucose]/[insulin] blunt the haemodynamic responses to NO3- , a pertinent question for carbohydrate-rich Western diets. METHODS: We conducted an acute, randomized, placebo-controlled, double-blind, crossover study on the haemodynamic and metabolic effects of potassium nitrate (8 or 24 mmol KNO3 ) vs. potassium chloride (KCl; placebo) administered 1 hour prior to an oral glucose tolerance test in 33 healthy volunteers. RESULTS: Compared to placebo, there were no significant differences in systolic or diastolic BP (P = 0.27 and P = 0.30 on ANOVA, respectively) with KNO3 , nor in pulse wave velocity or central systolic BP (P = 0.99 and P = 0.54 on ANOVA, respectively). Whilst there were significant elevations from baseline for plasma [glucose] and [C-peptide], no differences between interventions were observed. A significant increase in plasma [insulin] was observed with KNO3 vs. KCl (n = 33; P = 0.014 on ANOVA) with the effect driven by the high-dose cohort (24 mmol, n = 13; P < 0.001 on ANOVA; at T = 0.75 h mean difference 210.4 pmol/L (95% CI 28.5 to 392.3), P = 0.012). CONCLUSIONS: In healthy adults, acute physiological elevations of plasma [glucose] and [insulin] result in a lack of BP-lowering with dietary nitrate. The increase in plasma [insulin] without a corresponding change in [C-peptide] or [glucose] suggests that high-dose NO3- decreases insulin clearance. A likely mechanism is via NO-dependent inhibition of insulin-degrading enzyme.


Subject(s)
Blood Glucose/metabolism , Blood Pressure/drug effects , Insulin/blood , Nitrates/pharmacology , Potassium Compounds/pharmacology , Adult , Cross-Over Studies , Double-Blind Method , Female , Glucose/administration & dosage , Glucose/metabolism , Glucose Tolerance Test , Humans , Male , Nitrates/administration & dosage , Nitric Oxide/metabolism , Potassium Chloride/administration & dosage , Potassium Chloride/pharmacology , Potassium Compounds/administration & dosage , Pulse Wave Analysis , Young Adult
7.
Free Radic Biol Med ; 65: 1521-1532, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23806384

ABSTRACT

Ingestion of vegetables rich in inorganic nitrate has emerged as an effective method, via the formation of a nitrite intermediate, for acutely elevating vascular NO levels. As such a number of beneficial effects of dietary nitrate ingestion have been demonstrated including the suggestion that platelet reactivity is reduced. In this study we investigated whether inorganic nitrate supplementation might also reduce platelet reactivity in healthy volunteers and have determined the mechanisms involved in the effects seen. We conducted two randomised crossover studies each in 24 (12 of each sex) healthy subjects assessing the acute effects of dietary nitrate (250 ml beetroot juice) or potassium nitrate capsules (KNO3, 8 mmol) vs placebo control on platelet reactivity. Inorganic nitrate ingested either from a dietary source or via supplementation raised circulating nitrate and nitrite levels in both sexes and attenuated ex vivo platelet aggregation responses to ADP and, albeit to a lesser extent, collagen but not epinephrine in male but not female volunteers. These inhibitory effects were associated with a reduced platelet P-selectin expression and elevated platelet cGMP levels. In addition, we show that nitrite reduction to NO occurs at the level of the erythrocyte and not the platelet. In summary, our results demonstrate that inorganic nitrate ingestion, whether via the diet or through supplementation, causes a modest decrease in platelet reactivity in healthy males but not females. Our studies provide strong support for further clinical trials investigating the potential of dietary nitrate as an adjunct to current antiplatelet therapies to prevent atherothrombotic complications. Moreover, our observations highlight a previously unknown sexual dimorphism in platelet reactivity to NO and intimate a greater dependence of males on the NO-soluble guanylate cyclase pathway in limiting thrombotic potential.


Subject(s)
Blood Platelets/metabolism , Nitrates/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Potassium Compounds/pharmacology , Adolescent , Adult , Beta vulgaris , Cardiovascular Diseases/drug therapy , Collagen/pharmacology , Cross-Over Studies , Cyclic GMP/biosynthesis , Diet , Dietary Supplements , Epinephrine/pharmacology , Erythrocytes/metabolism , Female , Guanylate Cyclase/metabolism , Humans , Male , Middle Aged , Nitrates/administration & dosage , Nitric Oxide/metabolism , P-Selectin/biosynthesis , Platelet Aggregation Inhibitors/administration & dosage , Potassium Compounds/administration & dosage , Sex Factors , Vegetables , Young Adult
8.
Br J Clin Pharmacol ; 75(3): 677-96, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22882425

ABSTRACT

The discovery that dietary (inorganic) nitrate has important vascular effects came from the relatively recent realization of the 'nitrate-nitrite-nitric oxide (NO) pathway'. Dietary nitrate has been demonstrated to have a range of beneficial vascular effects, including reducing blood pressure, inhibiting platelet aggregation, preserving or improving endothelial dysfunction, enhancing exercise performance in healthy individuals and patients with peripheral arterial disease. Pre-clinical studies with nitrate or nitrite also show the potential to protect against ischaemia-reperfusion injury and reduce arterial stiffness, inflammation and intimal thickness. However, there is a need for good evidence for hard endpoints beyond epidemiological studies. Whilst these suggest reduction in cardiovascular risk with diets high in nitrate-rich vegetables (such as a Mediterranean diet), others have suggested possible small positive and negative associations with dietary nitrate and cancer, but these remain unproven. Interactions with other nutrients, such as vitamin C, polyphenols and fatty acids may enhance or inhibit these effects. In order to provide simple guidance on nitrate intake from different vegetables, we have developed the Nitrate 'Veg-Table' with 'Nitrate Units' [each unit being 1 mmol of nitrate (62 mg)] to achieve a nitrate intake that is likely to be sufficient to derive benefit, but also to minimize the risk of potential side effects from excessive ingestion, given the current available evidence. The lack of data concerning the long term effects of dietary nitrate is a limitation, and this will need to be addressed in future trials.


Subject(s)
Beta vulgaris , Cardiovascular System/metabolism , Diet , Nitrates/blood , Nitric Oxide/blood , Nitrites/blood , Plant Leaves/metabolism , Vegetables/metabolism , Blood Pressure/physiology , Blood Vessels/metabolism , Cardiovascular Diseases/diet therapy , Cardiovascular Diseases/metabolism , Cardiovascular System/drug effects , Humans , Risk Factors
10.
Hypertension ; 56(2): 274-81, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20585108

ABSTRACT

Ingestion of dietary (inorganic) nitrate elevates circulating and tissue levels of nitrite via bioconversion in the entero-salivary circulation. In addition, nitrite is a potent vasodilator in humans, an effect thought to underlie the blood pressure-lowering effects of dietary nitrate (in the form of beetroot juice) ingestion. Whether inorganic nitrate underlies these effects and whether the effects of either naturally occurring dietary nitrate or inorganic nitrate supplementation are dose dependent remain uncertain. Using a randomized crossover study design, we show that nitrate supplementation (KNO(3) capsules: 4 versus 12 mmol [n=6] or 24 mmol of KNO(3) (1488 mg of nitrate) versus 24 mmol of KCl [n=20]) or vegetable intake (250 mL of beetroot juice [5.5 mmol nitrate] versus 250 mL of water [n=9]) causes dose-dependent elevation in plasma nitrite concentration and elevation of cGMP concentration with a consequent decrease in blood pressure in healthy volunteers. In addition, post hoc analysis demonstrates a sex difference in sensitivity to nitrate supplementation dependent on resting baseline blood pressure and plasma nitrite concentration, whereby blood pressure is decreased in male volunteers, with higher baseline blood pressure and lower plasma nitrite concentration but not in female volunteers. Our findings demonstrate dose-dependent decreases in blood pressure and vasoprotection after inorganic nitrate ingestion in the form of either supplementation or by dietary elevation. In addition, our post hoc analyses intimate sex differences in nitrate processing involving the entero-salivary circulation that are likely to be major contributing factors to the lower blood pressures and the vasoprotective phenotype of premenopausal women.


Subject(s)
Blood Pressure/drug effects , Nitrates/pharmacology , Nitric Oxide/physiology , Potassium Compounds/pharmacology , Brachial Artery/anatomy & histology , Brachial Artery/drug effects , Brachial Artery/physiology , Cardiovascular Diseases/epidemiology , Cross-Over Studies , Cyclic GMP/blood , Double-Blind Method , Female , Heart Rate/drug effects , Humans , Hyperemia/physiopathology , Hypertension/complications , Hypotension/chemically induced , Life Style , Male , Nitrates/blood , Nitrites/blood , Nitrites/pharmacology , Posture , Potassium Chloride/pharmacology , Prevalence , Random Allocation , Risk Factors , Sex Characteristics , Systole/drug effects , Systole/physiology
11.
Nat Chem Biol ; 5(12): 865-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19915529

ABSTRACT

Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia. The latest advances in our understanding of the biochemistry, physiology and therapeutics of nitrate, nitrite and NO were discussed during a recent 2-day meeting at the Nobel Forum, Karolinska Institutet in Stockholm.


Subject(s)
Nitrates/metabolism , Nitrates/therapeutic use , Nitric Oxide/metabolism , Nitrites/metabolism , Nitrites/therapeutic use , Animals , Diet , Energy Metabolism , Humans , Mitochondria/metabolism , Nitrates/administration & dosage , Nitrites/administration & dosage , Signal Transduction
12.
Hypertension ; 51(3): 784-90, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18250365

ABSTRACT

Diets rich in fruits and vegetables reduce blood pressure (BP) and the risk of adverse cardiovascular events. However, the mechanisms of this effect have not been elucidated. Certain vegetables possess a high nitrate content, and we hypothesized that this might represent a source of vasoprotective nitric oxide via bioactivation. In healthy volunteers, approximately 3 hours after ingestion of a dietary nitrate load (beetroot juice 500 mL), BP was substantially reduced (Delta(max) -10.4/8 mm Hg); an effect that correlated with peak increases in plasma nitrite concentration. The dietary nitrate load also prevented endothelial dysfunction induced by an acute ischemic insult in the human forearm and significantly attenuated ex vivo platelet aggregation in response to collagen and ADP. Interruption of the enterosalivary conversion of nitrate to nitrite (facilitated by bacterial anaerobes situated on the surface of the tongue) prevented the rise in plasma nitrite, blocked the decrease in BP, and abolished the inhibitory effects on platelet aggregation, confirming that these vasoprotective effects were attributable to the activity of nitrite converted from the ingested nitrate. These findings suggest that dietary nitrate underlies the beneficial effects of a vegetable-rich diet and highlights the potential of a "natural" low cost approach for the treatment of cardiovascular disease.


Subject(s)
Beta vulgaris , Blood Pressure/physiology , Diet , Endothelium, Vascular/physiology , Nitrates/metabolism , Nitrites/metabolism , Platelet Aggregation/physiology , Adolescent , Adult , Cross-Over Studies , Humans , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/prevention & control , Middle Aged , Reperfusion Injury/metabolism , Reperfusion Injury/physiopathology , Reperfusion Injury/prevention & control , Saliva/metabolism , Tongue/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL