Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Biomech ; 54: 19-25, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28242060

ABSTRACT

Many research groups have studied fall impact mechanics to understand how fall severity can be reduced to prevent hip fractures. Yet, direct impact force measurements with force plates are restricted to a very limited repertoire of experimental falls. The purpose of this study was to develop a generic model for estimating hip impact forces (i.e. fall severity) in in vivo sideways falls without the use of force plates. Twelve experienced judokas performed sideways Martial Arts (MA) and Block ('natural') falls on a force plate, both with and without a mat on top. Data were analyzed to determine the hip impact force and to derive 11 selected (subject-specific and kinematic) variables. Falls from kneeling height were used to perform a stepwise regression procedure to assess the effects of these input variables and build the model. The final model includes four input variables, involving one subject-specific measure and three kinematic variables: maximum upper body deceleration, body mass, shoulder angle at the instant of 'maximum impact' and maximum hip deceleration. The results showed that estimated and measured hip impact forces were linearly related (explained variances ranging from 46 to 63%). Hip impact forces of MA falls onto the mat from a standing position (3650±916N) estimated by the final model were comparable with measured values (3698±689N), even though these data were not used for training the model. In conclusion, a generic linear regression model was developed that enables the assessment of fall severity through kinematic measures of sideways falls, without using force plates.


Subject(s)
Accidental Falls , Linear Models , Martial Arts/physiology , Posture/physiology , Adolescent , Adult , Biomechanical Phenomena , Bone Plates , Deceleration , Female , Hip Fractures/prevention & control , Humans , Male , Young Adult
2.
Neuroscience ; 240: 186-90, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23500095

ABSTRACT

INTRODUCTION: The startle reflex is an involuntary reaction to sudden sensory input and consists of a generalized flexion response. Startle responses in distal leg muscles occur more frequently during standing compared to sitting. We hypothesized that sensory input from load receptors modulates the occurrence of startle responses in leg muscles. METHODS: We administered sudden startling auditory stimuli (SAS) to 11 healthy subjects while (1) sitting relaxed, (2) standing relaxed, (3) standing while bearing 60% of their weight on the right leg, (4) standing while bearing 60% of their weight on the left leg, and (5) standing with 30% body weight support ('bilateral unloaded'). The requested weight distribution for each condition was verified using force plates. Electromyography data were collected from both tibialis anterior (TA) and the left sternocleidomastoid muscles. RESULTS: In the TA, startle responses occurred much more frequently during normal standing (26% of trials) compared to both sitting (6% of trials, p<0.01) and bilateral unloading (3% of trials, p<0.01). In the asymmetrical stance conditions, startle responses in the TA were more common in the loaded leg (21% of trials) compared to the unloaded leg (10% of trials, p<0.05). DISCUSSION: The occurrence of startle responses in the leg muscles was strongly influenced by load. Hence, it is likely that information from load receptors influences startle response activity. We suggest that, in a stationary position, startling stimuli result in a descending volley from brainstem circuits, which is gated at the spinal level by afferent input from load receptors.


Subject(s)
Leg/innervation , Muscle, Skeletal/physiology , Reflex, Startle/physiology , Weight-Bearing/physiology , Acoustic Stimulation , Adult , Analysis of Variance , Electromyography , Female , Humans , Male , Posture , Reaction Time , Young Adult
3.
J Biomech ; 45(9): 1650-5, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22537568

ABSTRACT

Sideways falls onto the hip are a major cause of femoral fractures in the elderly. Martial arts (MA) fall techniques decrease hip impact forces in sideways falls. The femoral fracture risk, however, also depends on the femoral loading configuration (direction and point of application of the force). The purpose of this study was to determine the effect of fall techniques, landing surface and fall height on the impact force and the loading configuration in sideways falls. Twelve experienced judokas performed sideways MA and Block ('natural') falls on a force plate, both with and without a judo mat on top. Kinematic and force data were analysed to determine the hip impact force and the loading configuration. In falls from a kneeling position, the MA technique reduced the impact force by 27%, but did not change the loading configuration. The use of the mat did not change the loading configuration. Falling from a standing changed the force direction. In all conditions, the point of application was distal and posterior to the greater trochanter, but it was less distal and more posterior in falls from standing than from kneeling position. The present decrease in hip impact force with an unchanged loading configuration indicates the potential protective effect of the MA technique on the femoral fracture risk. The change in loading configuration with an increased fall height warrant further studies to examine the effect of MA techniques on fall severity under more natural fall circumstances.


Subject(s)
Accidental Falls , Femoral Fractures/physiopathology , Martial Arts , Adolescent , Adult , Biomechanical Phenomena , Female , Femoral Fractures/prevention & control , Hip , Humans , Male , Weight-Bearing/physiology , Young Adult
4.
Osteoporos Int ; 21(2): 215-21, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19407919

ABSTRACT

UNLABELLED: Hip fractures are a common and serious consequence of falls. Training of proper fall techniques may be useful to prevent hip fractures in the elderly. The results suggested that martial arts fall techniques may be trainable in older individuals. Better performance resulted in a reduced impact force. INTRODUCTION: Hip fractures are a common and serious consequence of falls. Fall training may be useful to prevent hip fractures in the elderly. This pilot study determined whether older individuals could learn martial arts (MA) fall techniques and whether this resulted in a reduced hip impact force during a sideways fall. METHODS: Six male and nineteen female healthy older individuals completed a five-session MA fall training. Before and after training, force and kinematic data were collected during volitional sideways falls from kneeling position. Two MA experts evaluated the fall performance. Fear of falling was measured with a visual analog scale (VAS). RESULTS: After fall training, fall performance from a kneeling position was improved by a mean increase of 1.6 on a ten-point scale (P < 0.001). Hip impact force was reduced by a mean of 8% (0.20 N/N, P = 0.016). Fear of falling was reduced by 0.88 on a VAS scale (P = 0.005). CONCLUSION: MA techniques may be trainable in older individuals, and a better performance may reduce the hip impact force in a volitional sideways fall from a kneeling position. The additional reduction of fear of falling might result in the prevention of falls and related injuries.


Subject(s)
Accidental Falls , Hip Fractures/prevention & control , Martial Arts/education , Aged , Aged, 80 and over , Fear , Female , Health Promotion/methods , Hip Fractures/etiology , Hip Joint/physiopathology , Humans , Male , Martial Arts/physiology , Middle Aged , Pilot Projects , Self Efficacy , Stress, Mechanical
5.
J Electromyogr Kinesiol ; 19(3): 521-31, 2009 Jun.
Article in English | MEDLINE | ID: mdl-18243018

ABSTRACT

Although the practice of fall techniques has been introduced in fall prevention programs, it is not clear whether people can apply acquired techniques during a real-life fall. It would be helpful to know the time it takes to initiate and to successfully execute such techniques, as well as the effect of experience on the execution of these techniques. In this study we investigated the neuromuscular control of voluntary fall techniques in five seasoned judokas and nine non-judokas. After they had started falling from a kneeling position, they received an auditory cue prompting either a lateral natural fall arrest (block) or a martial arts (MA) fall. EMG data of shoulder and trunk muscles were collected. The requested technique was successfully applied in 85% of the falls. Following the cue, EMG amplitudes of the fall techniques started to diverge after 180-190 ms. EMG amplitudes were generally similar in both groups, but experience-related differences could be demonstrated in the pectoralis and trapezius. In conclusion, voluntary motor control is possible within the duration of a fall, even in inexperienced fallers. Differences in EMG activity might suggest that experienced fallers changed their reaction to possible falls from a preparation for arm abduction into a preparation for trunk rotation.


Subject(s)
Accidental Falls/prevention & control , Learning/physiology , Martial Arts/physiology , Motor Skills/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Task Performance and Analysis , Adult , Arm/physiology , Female , Humans , Movement/physiology , Shoulder/physiology , Time Factors , Young Adult
6.
J Electromyogr Kinesiol ; 18(2): 228-34, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17764973

ABSTRACT

Fall techniques that reduce fall severity may decrease the risk of hip fractures. A fundamental variable for fall severity is impact force, but impact velocity is also used. The purpose of the study was to determine whether impact velocity is valid to determine differences in fall severity between different techniques. Five young adults with martial arts (MA) experience performed sideways falls from kneeling height using three techniques: Block with arm (Block) and MA techniques with and without use of the arm to break the fall. In addition, one subject also performed MA falls from standing height. Linear regression analysis showed a moderate relation between hip impact velocity and force, which was depended on technique. In falls with comparable impact velocities, forces in MA falls were lower than forces in Block falls. Hence, differences in impact force could not be predicted by velocity. In conclusion, hip impact velocity may be useful to make an approximate prediction of impact force within fall techniques. However, to determine differences between techniques it was not always a valid predictor. When direct impact force measurements are not possible, methods combining impact velocity with energy estimates before and after impact might be more valid.


Subject(s)
Accidental Falls , Hip Fractures/physiopathology , Hip Joint/physiology , Accidental Falls/prevention & control , Adult , Biomechanical Phenomena , Female , Hip Fractures/prevention & control , Humans , Martial Arts
7.
J Electromyogr Kinesiol ; 18(2): 235-42, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17764975

ABSTRACT

Hip fractures are among the most serious consequences of falls in the elderly. Martial arts (MA) fall techniques may reduce hip fracture risk, as they are known to reduce hip impact forces by approximately 30% in experienced fallers. The purpose of this study was to investigate whether hip impact forces and velocities in MA falls would be smaller than in a 'natural' fall arrest strategy (Block) in young adults (without any prior experience) after a 30-min training session in sideways MA fall techniques. Ten subjects fell sideways from kneeling height. In order to identify experience-related differences, additional EMG data of both fall types were collected in inexperienced (n=10) and experienced fallers (n=5). Compared to Block falls, MA falls had significantly smaller hip impact forces (-17%) and velocities (-7%). EMG results revealed experience-related differences in the execution of the MA fall, indicative of less pronounced trunk rotation in the inexperienced fallers. This may explain their smaller reduction of impact forces compared to experienced fallers. In conclusion, the finding that a substantial reduction in impact forces can be achieved after a short training in MA techniques is very promising with respect to their use in interventions to prevent fall injuries.


Subject(s)
Accidental Falls , Hip Fractures/prevention & control , Hip Joint/physiology , Martial Arts , Adult , Biomechanical Phenomena , Electromyography , Female , Hip Fractures/physiopathology , Hip Joint/physiopathology , Humans
8.
J Biomech ; 40(2): 458-62, 2007.
Article in English | MEDLINE | ID: mdl-16480724

ABSTRACT

Falls to the side and those with impact on the hip are risky for hip fractures in the elderly. A previous study has indicated that martial arts (MA) fall techniques can reduce hip impact force, but the underlying mechanism is unknown. Furthermore, the high impact forces at the hand used to break the fall have raised concerns because of the risk for wrist fractures. The purpose of the study was to get insight into the role of hand impact, impact velocity, and trunk orientation in the reduction of hip impact force in MA techniques. Six experienced judokas performed sideways falls from kneeling height using three fall techniques: block with arm technique (control), MA technique with use of the arm to break the fall (MA-a), and MA technique without use of the arm (MA-na). The results showed that the MA-a and MA-na technique reduced the impact force by 27.5% and 30%, respectively. Impact velocity was significantly reduced in the MA falls. Trunk orientation was significantly less vertical in the MA-a falls. No significant differences were found between the MA techniques. It was concluded that the reduction in hip impact force was associated with a lower impact velocity and less vertical trunk orientation. Rolling after impact, which is characteristic for MA falls, is likely to contribute to the reduction of impact forces, as well. Using the arm to break the fall was not essential for the MA technique to reduce hip impact force. These findings provided support for the incorporation of MA fall techniques in fall prevention programs for elderly.


Subject(s)
Biomechanical Phenomena , Hip Joint/physiology , Martial Arts/physiology , Movement/physiology , Adult , Humans
SELECTION OF CITATIONS
SEARCH DETAIL