Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Planta ; 259(1): 6, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38001306

ABSTRACT

MAIN CONCLUSION: Rpf107 is involved in the infection process of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The LURP-one related (LOR) protein family plays a pivotal role in mediating plant defense responses against both biotic and abiotic stresses. However, our understanding of its function in the symbiotic interaction between legumes and rhizobia remains limited. Here, Rpf107, a homolog of LOR, was identified in Robinia pseudoacacia (black locust). The subcellular localization of Rpf107 was analyzed, and its function was investigated using RNA interference (RNAi) and overexpression techniques. The subcellular localization assay revealed that Rpf107 was mainly distributed in the plasma membrane and nucleus. Rpf107 silencing prevented rhizobial infection and hampered plant growth. The number of infected cells in the nitrogen fixation zone of the Rpf107-RNAi nodules was also noticeably lower than that in the control nodules. Notably, Rpf107 silencing resulted in bacteroid degradation and the premature aging of nodules. In contrast, the overexpression of Rpf107 delayed the senescence of nodules and prolonged the nitrogen-fixing ability of nodules. These results demonstrate that Rpf107 was involved in the infection of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The findings reveal that a member of the LOR protein family plays a role in leguminous root nodule symbiosis, which is helpful to clarify the functions of plant LOR protein family and fully understand the molecular mechanisms underlying legume-rhizobium symbiosis.


Subject(s)
Fabaceae , Rhizobium , Robinia , Robinia/genetics , Root Nodules, Plant/metabolism , Symbiosis/genetics , Genes, vif , Nitrogen Fixation/genetics , Rhizobium/physiology , Fabaceae/genetics , Plant Proteins/metabolism
2.
Huan Jing Ke Xue ; 44(9): 5176-5185, 2023 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-37699835

ABSTRACT

This study was conducted to explore the fertilization potential of the high-volume straw returning mode in cooperation with Bacillus and other functional flora on desertification soil and to analyze the changing characteristics of soil carbon, nitrogen, and phosphorus components and functional activities of flora, so as to provide a basis for efficiently improving desertification soil fertility. A randomized block experiment was conducted, setting straw not returning to field (CK) and high-volume straw returning of 6.00 kg·m-2 (ST1), 12.00 kg·m-2 (ST2), 24.00 kg·m-2+(ST3), 6.00 kg·m-2+Bacillus (SM1), 12.00 kg·m-2+Bacillus (SM2), and 24.00 kg·m-2+Bacillus (SM3). In this study, we conducted a randomized block experiment to investigate the effect of the treatment for soil microbial and nutrient contents using 16S rRNA high-throughput sequencing and soil biochemical properties analysis. Our results showed that:① the α diversity of the soil bacterial community was significantly reduced by the combination of high-volume straw returning and Bacillus application. ② The single mode of high-volume straw returning significantly enriched Proteobacteria and decreased the relative abundance of Actinobacteriota, and the effect of the combined application of Bacillus on the variability of bacterial community structure was more significant. At the genus level, the relative abundance of beneficial bacteria such as Pseudomonas, Rhodanobacter, and Bacillus increased significantly. ③ The functional prediction based on FAPROTAX found that the high-volume straw returning combined with Bacillus could significantly improve the decomposition potential of soil flora to organic substances and the transformation potential of nitrogen components. ④ Compared with that in the control, the application of Bacillus with high-volume straw returning significantly increased the contents of soil organic matter, total phosphorus, and available phosphorus by 31.20-32.75 g·kg-1, 0.11-0.18 g·kg-1, and 29.69-35.09 mg·kg-1, respectively. In conclusion, the application of Bacillus in the sand-blown area with a high-volume straw returning can notably improve the contents of soil organic matter and phosphorus components, the functional activity of bacteria, and the abundance of beneficial bacteria, which is of great significance to the rapid improvement of soil fertility in the middle- and low-yield fields in arid areas.


Subject(s)
Bacillus , Soil , Conservation of Natural Resources , RNA, Ribosomal, 16S , Bacteria/genetics , Nitrogen , Phosphorus
3.
BMC Plant Biol ; 23(1): 449, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37743492

ABSTRACT

BACKGROUND: The growth of alfalfa (Medicago sativa L.) is significantly hampered by drought and nutrient deficiencies. The identification of root architectural and anatomical characteristics holds paramount importance for the development of alfalfa genotypes with enhanced adaptation to adverse environmental conditions. In this study, we employed a visual rhizobox system to investigate the variability in root system architecture (including root depth, root length, root tips number, etc.), anatomical features (such as cortical traits, total stele area, number and area of vessel, etc.), as well as nitrogen and phosphorus uptake across 53 alfalfa genotypes during the seedling stage. RESULTS: Out of the 42 traits measured, 21 root traits, along with nitrogen (N) and phosphorus (P) uptake, displayed higher coefficients of variation (CVs ≥ 0.25) among the tested genotypes. Local root morphological and anatomical traits exhibited more significant variation than global root traits. Twenty-three traits with CVs ≥ 0.25 constituted to six principal components (eigenvalues > 1), collectively accounting for 88.0% of the overall genotypic variation. Traits such as total root length, number of root tips, maximal root depth, and others exhibited positive correlations with shoot dry mass and root dry mass. Additionally, total stele area and xylem vessel area showed positive correlations with N and P uptake. CONCLUSIONS: These root traits, which have demonstrated associations with biomass and nutrient uptake, may be considered for the breeding of alfalfa genotypes that possess efficient resource absorption and increased adaptability to abiotic stress, following validation during the entire growth period in the field.


Subject(s)
Medicago sativa , Seedlings , Medicago sativa/genetics , Seedlings/genetics , Plant Breeding , Nitrogen , Phosphorus
4.
Microbiome ; 11(1): 109, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37211607

ABSTRACT

BACKGROUND: Allelopathy is closely associated with rhizosphere biological processes, and rhizosphere microbial communities are essential for plant development. However, our understanding of rhizobacterial communities under influence of allelochemicals in licorice remains limited. In the present study, the responses and effects of rhizobacterial communities on licorice allelopathy were investigated using a combination of multi-omics sequencing and pot experiments, under allelochemical addition and rhizobacterial inoculation treatments. RESULTS: Here, we demonstrated that exogenous glycyrrhizin inhibits licorice development, and reshapes and enriches specific rhizobacteria and corresponding functions related to glycyrrhizin degradation. Moreover, the Novosphingobium genus accounted for a relatively high proportion of the enriched taxa and appeared in metagenomic assembly genomes. We further characterized the different capacities of single and synthetic inoculants to degrade glycyrrhizin and elucidated their distinct potency for alleviating licorice allelopathy. Notably, the single replenished N (Novosphingobium resinovorum) inoculant had the greatest allelopathy alleviation effects in licorice seedlings. CONCLUSIONS: Altogether, the findings highlight that exogenous glycyrrhizin simulates the allelopathic autotoxicity effects of licorice, and indigenous single rhizobacteria had greater effects than synthetic inoculants in protecting licorice growth from allelopathy. The results of the present study enhance our understanding of rhizobacterial community dynamics during licorice allelopathy, with potential implications for resolving continuous cropping obstacle in medicinal plant agriculture using rhizobacterial biofertilizers. Video Abstract.


Subject(s)
Glycyrrhiza , Glycyrrhiza/chemistry , Allelopathy , Glycyrrhizic Acid , Metagenomics , Rhizosphere
5.
Sci Total Environ ; 855: 158697, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36099947

ABSTRACT

A better understanding of bacterial communities and metabolomic responses to pristine zinc oxide manufacture nanoparticles (ZnO MNPs) and its sulfidized product (s-ZnO MNPs), as well as their corresponding Zn ions in rhizocompartments, critical in the plant-microbe interactions, could contribute to the sustainable development of nano-enabled agriculture. In this study, soybean (Glycine max) were cultivated in soils amended with three Zn forms, namely ZnSO4·7H2O, ZnO MNPs and s-ZnO MNPs at 0, 100 and 500 mg·kg-1 for 70 days. Three Zn forms exposures profoundly decreased the bacterial alpha diversity in roots and nodules. High dose (500 mg·kg-1) groups had a stronger impact on the bacterial beta diversity than low dose (100 mg·kg-1) groups. In the rhizosphere soil and roots, 500 mg·kg-1 of ZnSO4 and s-ZnO MNPs treatments showed the largest shifts in bacterial community structure, respectively. In addition, several significant changed bacterial taxa and metabolites were found at the high dose groups, which were associated with carbon and nitrogen metabolism. PLS-DA plot showed good discrimination in metabolomic profiles of rhizosphere soil and roots between three Zn forms treatments and control. Most metabolic pathways perturbed were closely linked to oxidative stress. Overall, our study indicates either dissolved or nano-particulate Zn exposure at high dose can drastically affected bacterial communities and metabolite profiles in soybean rhizocompartments.


Subject(s)
Nanoparticles , Soil Pollutants , Zinc Oxide , Zinc Oxide/toxicity , Glycine max , Soil/chemistry , Nanoparticles/toxicity , Soil Pollutants/toxicity , Bacteria
6.
Sci Total Environ ; 844: 157215, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35809728

ABSTRACT

Phosphorus (P) is essential for crop growth as an indispensable nutrient; however, there has been growing concern over the low use efficiency of P used in current fertilizers. We synthesized and characterized a potential P fertilizer nanohydroxyapatite/biochar/sodium humate (nHAP/BC/HANa) composite. To study the impact of the composite on soil chemical properties and microbial community in sandy soils, we set up four treatments as follows: (1) biochar (BC), (2) nanohydroxyapatite (nHAP), (3) nHAP/BC/HANa composite, and (4) sodium humate (HANa) was added separately into soils amended with nHAP/BC (nHAP/BC + HANa) to compare its performance with that of the nHAP/BC/HANa composite. A key finding was that the nHAP/BC/HANa composite not only significantly increased the soil available P content and alkaline phosphatase activity but also the increased organic matter content compared to the control. Additionally, leaching losses of P in soils amended with the nHAP/BC/HANa composite were lower than those in soils amended with the nHAP/BC + HANa, which suggested that the nHAP/BC/HANa composite had great potential to decrease P loss in sandy soils. Moreover, bacterial communities were more sensitive than fungal communities to all treatments. The bacterial communities showed the most significant changes in the nHAP/BC/HANa treatments. Results from Mantel tests further indicated that the strongest correlation between bacterial communities and soil properties occurring in the nHAP/BC/HANa treatments. Random forest analysis was conducted to identify the dominant microbial taxa, such as Proteobacteria, Acidobacteria, and Gemmatimonadetes, for predicting changes in soil properties. There was an asymptotical transition in bacterial community assembly processes from stochastic to deterministic in the nHAP/BC/HANa treatments. In conclusion, we demonstrated that nHAP/BC/HANa composite had the remarkable contribution to soil P availability in sandy soils, and simultaneously promoted the bacterial functions potential for P cycling, which present valuable insights to the development of potential P fertilizer.


Subject(s)
Microbiota , Soil , Bacteria , Charcoal/chemistry , Fertilizers , Phosphorus , Sand , Sodium , Soil/chemistry , Soil Microbiology
7.
Plant Cell Environ ; 45(7): 2191-2210, 2022 07.
Article in English | MEDLINE | ID: mdl-35419804

ABSTRACT

Nitrogen-fixing root nodules are formed by symbiotic association of legume hosts with rhizobia in nitrogen-deprived soils. Successful symbiosis is regulated by signals from both legume hosts and their rhizobial partners. HmuS is a heme degrading factor widely distributed in bacteria, but little is known about the role of rhizobial hmuS in symbiosis with legumes. Here, we found that inactivation of hmuSpSym in the symbiotic plasmid of Mesorhizobium amorphae CCNWGS0123 disrupted rhizobial infection, primordium formation, and nitrogen fixation in symbiosis with Robinia pseudoacacia. Although there was no difference in bacteroids differentiation, infected plant cells were shrunken and bacteroids were disintegrated in nodules of plants infected by the ΔhmuSpSym mutant strain. The balance of defence reaction was also impaired in ΔhmuSpSym strain-infected root nodules. hmuSpSym was strongly expressed in the nitrogen-fixation zone of mature nodules. Furthermore, the HmuSpSym protein could bind to heme but not degrade it. Inactivation of hmuSpSym led to significantly decreased expression levels of oxygen-sensing related genes in nodules. In summary, hmuSpSym of M. amorphae CCNWGS0123 plays an essential role in nodule development and maintenance of bacteroid survival within R. pseudoacacia cells, possibly through heme-binding in symbiosis.


Subject(s)
Fabaceae , Mesorhizobium , Rhizobium , Robinia , Fabaceae/microbiology , Fibrinogen/metabolism , Heme/metabolism , Mesorhizobium/physiology , Nitrogen/metabolism , Nitrogen Fixation/genetics , Rhizobium/genetics , Robinia/physiology , Root Nodules, Plant/metabolism , Symbiosis/genetics
8.
Front Microbiol ; 12: 642730, 2021.
Article in English | MEDLINE | ID: mdl-34046020

ABSTRACT

Astragalus membranaceus (Fisch.) Bge. var. mongholicus, which is used in traditional Chinese medicine, contains several bioactive ingredients. The root-associated microbial communities play a crucial role in the production of secondary metabolites in plants. However, the correlation of root-associated bacteria and fungi with the bioactive ingredients production in A. mongholicus has not been elucidated. This study aimed to examine the changes in soil properties, root bioactive ingredients, and microbial communities in different cultivation years. The root-associated bacterial and fungal composition was analyzed using high-throughput sequencing. The correlation between root-associated bacteria and fungi, soil properties, and six major bioactive ingredients were examined using multivariate correlation analysis. Results showed that soil properties and bioactive ingredients were distinct across different cultivation years. The composition of the rhizosphere microbiome was different from that of the root endosphere microbiome. The bacterial community structure was affected by the cultivation year and exhibited a time-decay pattern. Soil properties affected the fungal community composition. It was found that 18 root-associated bacterial operational taxonomic units (OTUs) and four fungal OTUs were positively and negatively correlated with bioactive ingredient content, respectively. The abundance of Stenotrophomonas in the rhizosphere was positively correlated with astragaloside content. Phyllobacterium and Inquilinus in the endosphere were positively correlated with the calycosin content. In summary, this study provided a new opportunity and theoretical reference for improving the production and quality of in A. mongholicus, which thus increase the pharmacological value of A. mongholicus.

9.
Mol Plant Microbe Interact ; 34(5): 511-523, 2021 May.
Article in English | MEDLINE | ID: mdl-33630651

ABSTRACT

Similar to pathogenic bacteria, rhizobia can inject effector proteins into host cells directly to promote infection via the type III secretion system (T3SS). Nodulation outer protein P (NopP), a specific T3SS effector of rhizobia, plays different roles in the establishment of multiple rhizobia-legume symbiotic systems. Mesorhizobium amorphae CCNWGS0123 (GS0123), which infects Robinia pseudoacacia specifically, secretes several T3SS effectors, including NopP. Here, we demonstrate that NopP is secreted through T3SS-I of GS0123 during the early stages of infection, and its deficiency decreases nodule nitrogenase activity of R. pseudoacacia nodules. A trafficking protein particle complex subunit 13-like protein (TRAPPC13) has been identified as a NopP target protein in R. pseudoacacia roots by screening a yeast two-hybrid library. The physical interaction between NopP and TRAPPC13 is verified by bimolecular fluorescence complementation and coimmunoprecipitation assays. In addition, subcellular localization analysis reveals that both NopP and its target, TRAPPC13, are colocalized on the plasma membrane. Compared with GS0123-inoculated R. pseudoacacia roots, some genes associated with cell wall remodeling and plant innate immunity down-regulated in ΔnopP-inoculated roots at 36 h postinoculation. The results suggest that NopP in M. amorphae CCNWGS0123 acts in multiple processes in R. pseudoacacia during the early stages of infection, and TRAPPC13 could participate in the process as a NopP target.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Mesorhizobium , Rhizobium , Robinia , Mesorhizobium/genetics , Symbiosis , Type III Secretion Systems/genetics
10.
Microb Ecol ; 82(2): 391-402, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33449130

ABSTRACT

The high plasticity of root morphology, physiology, and function influences root-associated microbiomes. However, the variation in root-associated microbiome diversity and structures in response to root diameter at different root depths remains poorly understood. Here, we selected black locust (Robinia pseudoacacia L.) as a model plant to investigate the selection and network interactions of rhizospheric and root endophytic bacterial microbiomes associated with roots of different diameters (1, 1-2, and > 2 mm) among root depths of 0-100 cm via the Illumina sequencing of the 16S rRNA gene. The results showed that the alpha diversity of the root-associated bacterial communities decreased with increasing root diameters among different root depths; fewer orders with higher relative abundance, especially in the endosphere, were enriched in association with coarse roots (> 2 mm) than fine roots among root depths. Furthermore, the variation in the enriched bacterial orders associated with different root diameters was explained by bulk soil properties. Higher co-occurrence network complexity and stability emerged in the rhizosphere microbiomes of fine roots than those of coarse roots, in contrast to the situation in the endosphere microbiomes. In particular, the endosphere of roots with a diameter of 1-2 mm exhibited the lowest network complexity and stability and a high proportion of keystone taxa (e.g., Cytophagia, Flavobacteriia, Sphingobacteriia, ß-Proteobacteria, and γ-Proteobacteria), suggesting a keystone taxon-reliant strategy in this transitional stage. In summary, this study indicated that root diameter at different root depths differentially affects rhizospheric and endophytic bacterial communities, which implies a close relationship between the bacterial microbiome, root function, and soil properties.


Subject(s)
Microbiota , Robinia , Plant Roots , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil Microbiology
11.
Tree Physiol ; 41(5): 817-835, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33219377

ABSTRACT

Under nitrogen-limiting conditions, symbiotic nodulation promotes the growth of legume plants via the fixation of atmospheric nitrogen to ammonia by rhizobia in root nodules. The rhizobial Nod factor (NF) and type III secretion system (T3SS) are two key signaling pathways for establishing the legume-rhizobium symbiosis. However, whether NF signaling is involved in the nodulation of Robinia pseudoacacia and Mesorhizobium amorphae CCNWGS0123, and its symbiotic differences compared with T3SS signaling remain unclear. Therefore, to elucidate the function of NF signaling in nodulation, we mutated nodC in M. amorphae CCNWGS0123, which aborted NF synthesis. Compared with the plants inoculated with the wild type strain, the plants inoculated with the NF-deficient strain exhibited shorter shoots with etiolated leaves. These phenotypic characteristics were similar to those of the plants inoculated with the T3SS-deficient strain, which served as a Nod- (non-effective nodulation) control. The plants inoculated with both the NF- and T3SS-deficient strains formed massive root hair swellings, but no normal infection threads were detected. Sections of the nodules showed that inoculation with the NF- and T3SS-deficient strains induced small, white bumps without any rhizobia inside. Analyzing the accumulation of 6 plant hormones and the expression of 10 plant genes indicated that the NF- and T3SS-deficient strains activated plant defense reactions while suppressing plant symbiotic signaling during the perception and nodulation processes. The requirement for NF signaling appeared to be conserved in two other leguminous trees that can establish symbiosis with M. amorphae CCNWGS0123. In contrast, the function of the T3SS might differ among species, even within the same subfamily (Faboideae). Overall, this work demonstrated that nodulation of R. pseudoacacia and M. amorphae CCNWGS0123 was both NF and T3SS dependent.


Subject(s)
Mesorhizobium , Robinia , Mesorhizobium/genetics , Plant Root Nodulation , Root Nodules, Plant , Symbiosis , Type III Secretion Systems/genetics
12.
Plant Soil ; 456(1-2): 61-79, 2020.
Article in English | MEDLINE | ID: mdl-32895581

ABSTRACT

AIMS: Licorice (Glycyrrhiza uralensis Fisch.) is a crucial medicinal herb as it accumulates glycyrrhizin and liquiritin in roots. Licorice root-associated bacterial communities shaped by soil characteristics are supposed to regulate the accumulation of root secondary metabolites. METHODS: The soil characteristics, root secondary metabolites, and root-associated bacterial communities were analyzed in licorice plants of different ages to explore their temporal dynamics and interaction mechanisms. RESULTS: Temporal variation in soil characteristics and root secondary metabolites was distinct. The alpha-diversity of root-associated bacterial communities decreased with root proximity, and the community composition was clustered in the rhizosphere. Different taxa that were core-enriched from the dominant taxa in the bulk soil, rhizosphere soil, and root endosphere displayed varied time-decay relationships. Soil total potassium (TK) as a key factor regulated the temporal variation in some individual taxa in the bulk and rhizosphere soils; these taxa were associated with the adjustment of root secondary metabolites across different TK levels. CONCLUSIONS: Licorice specifically selects root-associated core bacteria over the course of plant development, and TK is correlated with root secondary metabolites and individual core-enriched taxa in the bulk and rhizosphere soils, which may have implications for practical licorice cultivation.

13.
J Exp Bot ; 71(22): 7347-7363, 2020 12 31.
Article in English | MEDLINE | ID: mdl-32865563

ABSTRACT

Nodulation outer proteins secreted via type 3 secretion systems are involved in the process of symbiosis between legume plants and rhizobia. To study the function of NopT in symbiosis, we mutated nopT in Mesorhizobium amphore CCNWGS0123 (GS0123), which can nodulate black locust (Robinia pseudoacacia). The nopT mutant induced higher levels of jasmonic acid, salicylic acid, and hydrogen peroxide accumulation in the roots of R. pseudoacacia compared with wild-type GS0123. The ΔnopT mutant induced higher disease-resistant gene expression 72 hours post-inoculation (hpi), whereas GS0123 induced higher disease-resistant gene expression earlier, at 36 hpi. Compared with the nopT mutant, GS0123 induced the up-regulation of most genes at 36 hpi and the down-regulation of most genes at 72 hpi. Proteolytically active NopT_GS0123 induced hypersensitive responses when expressed transiently in tobacco leaves (Nicotiana benthamiana). Two NopT_GS0123 targets in R. pseudoacacia were identified, ATP-citrate synthase alpha chain protein 2 and hypersensitive-induced response protein. Their interactions with NopT_GS0123 triggered resistance by the plant immune system. In conclusion, NopT_GS0123 inhibited the host plant immune system and had minimal effect on nodulation in R. pseudoacacia. Our results reveal the underlying molecular mechanism of NopT function in plant-symbiont interactions.


Subject(s)
Mesorhizobium , Rhizobium , Robinia , Plant Roots , Robinia/genetics , Symbiosis
14.
BMC Microbiol ; 20(1): 38, 2020 02 21.
Article in English | MEDLINE | ID: mdl-32085752

ABSTRACT

BACKGROUND: Excessive application of chemical fertilizer has exerted a great threat to soil quality and the environment. The inoculation of plants with plant-growth-promoting rhizobacteria (PGPR) has emerged as a great prospect for ecosystem recovery. The aim of this work to isolate PGPRs and highlights the effect of bacterial inoculants on available N/P/K content in soil and on the growth of wheat under conditions of reduced fertilizer application. RESULTS: Thirty-nine PGPRs were isolated and tested for their growth-promoting potential. Thirteen isolates had nitrogen fixation ability, of which N9 (Azotobacter chroococcum) had the highest acetylene reduction activity of 156.26 nmol/gh. Eleven isolates had efficient phosphate solubilizing ability, of which P5 (Klebsiella variicola) released the most available phosphorus in liquid medium (231.68 mg/L). Fifteen isolates had efficient potassium solubilizing ability, of which K13 (Rhizobium larrymoorei) released the most available potassium in liquid medium (224.66 mg/L). In culture medium supplemented with tryptophan, P9 (Klebsiella pneumoniae) produced the greatest amount of IAA. Inoculation with the bacterial combination K14 + 176 + P9 + N8 + P5 increased the alkali-hydrolysed nitrogen, available phosphorus and available potassium in the soil by 49.46, 99.51 and 19.38%, respectively, and enhanced the N, P, and K content of wheat by 97.7, 96.4 and 42.1%, respectively. Moreover, reducing fertilizer application by 25% did not decrease the available nitrogen, phosphorus, and potassium in the soil and N/P/K content, plant height, and dry weight of wheat. CONCLUSIONS: The bacterial combination K14 + 176 + P9 + N8 + P5 is superior candidates for biofertilizers that may reduce chemical fertilizer application without influencing the normal growth of wheat.


Subject(s)
Culture Media/chemistry , Rhizobiaceae/classification , Rhizobiaceae/physiology , Triticum/growth & development , Fertilizers/analysis , Nitrogen Fixation , Phosphorus/metabolism , Phylogeny , Potassium/metabolism , RNA, Ribosomal, 16S/genetics , Rhizobiaceae/isolation & purification , Sequence Analysis, DNA , Soil Microbiology , Triticum/microbiology
15.
Planta ; 250(6): 1897-1910, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31485773

ABSTRACT

MAIN CONCLUSION: A homologue of the ribosomal protein L22e, Rpf84, regulates root nodule symbiosis by mediating the infection process of rhizobia and preventing bacteroids from degradation in Robinia pseudoacacia. Ribosomal proteins (RPs) are known to have extraribosomal functions, including developmental regulation and stress responses; however, the effects of RPs on symbiotic nodulation of legumes are still unclear. Ribosomal protein 22 of the large 60S subunit (RPL22), a non-typical RP that is only found in eukaryotes, has been shown to function as a tumour suppressor in animals. Here, a homologue of RPL22, Rpf84, was identified from the leguminous tree R. pseudoacacia. Subcellular localization assays showed that Rpf84 was expressed in the cytoplasm and nucleus. Knockdown of Rpf84 by RNA interference (RNAi) technology impaired the infection process and nodule development. Compared with the control, root and stem length, dry weight and nodule number per plant were drastically decreased in Rpf84-RNAi plants. The numbers of root hair curlings, infection threads and nodule primordia were also significantly reduced. Ultrastructure analyses showed that Rpf84-RNAi nodules contained fewer infected cells with fewer bacteria. In particular, remarkable deformation of bacteroids and fusion of multiple symbiosomes occurred in infected cells. By contrast, overexpression of Rpf84 promoted nodulation, and the overexpression nodules maintained a larger infection/differentiation region and had more infected cells filled with bacteroids than the control at 45 days post inoculation, suggesting a retarded ageing process in nodules. These results indicate for the first time that RP regulates the symbiotic nodulation of legumes and that RPL22 may function in initiating the invasion of rhizobia and preventing bacteroids from degradation in R. pseudoacacia.


Subject(s)
Genes, Plant/genetics , Plant Proteins/genetics , Plant Root Nodulation/genetics , Ribosome Subunits, Large/genetics , Robinia/genetics , Cloning, Molecular , Genes, Plant/physiology , Plant Proteins/physiology , Real-Time Polymerase Chain Reaction , Ribosome Subunits, Large/physiology , Robinia/growth & development , Robinia/physiology , Root Nodules, Plant/growth & development , Root Nodules, Plant/metabolism , Symbiosis/genetics , Transcriptome
16.
Tree Physiol ; 39(9): 1533-1550, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31274160

ABSTRACT

Rhizobia and legume plants are famous mutualistic symbiosis partners who provide nitrogen nutrition to the natural environment. Rhizobial type III secretion systems (T3SSs) deliver effectors that manipulate the metabolism of eukaryotic host cells. Mesorhizobium amorphae CCNWGS0123 (GS0123) contains two T3SS gene clusters, T3SS-I and T3SS-II. T3SS-I contains all the basal components for an integrated T3SS, and the expression of T3SS-I genes is up-regulated in the presence of flavonoids. In contrast, T3SS-II lacks the primary extracellular elements of T3SSs, and the expression of T3SS-II genes is down-regulated in the presence of flavonoids. Inoculation tests on Robinia pseudoacacia displayed considerable differences in gene expression patterns and levels among roots inoculated with GS0123 and T3SS-deficient mutant (GS0123ΔrhcN1 (GS0123ΔT1), GS0123ΔrhcN2 (GS0123ΔT2) and GS0123ΔrhcN1ΔrhcN2 (GS0123ΔS)). Compared with the GS0123-inoculated plants, GS0123ΔT1-inoculated roots formed very few infection threads and effective nodules, while GS0123ΔT2-inoculated roots formed a little fewer infection threads and effective nodules with increased numbers of bacteroids enclosed in one symbiosome. Moreover, almost no infection threads or effective nodules were observed in GS0123ΔS-inoculated roots. In addition to evaluations of plant immunity signals, we observed that the coexistence of T3SS-I and T3SS-II promoted infection by suppressing host defense response in the reactive oxygen species defense response pathway. Future studies should focus on identifying rhizobial T3SS effectors and their host target proteins.


Subject(s)
Mesorhizobium , Robinia , Symbiosis , Type III Secretion Systems
17.
Genome Biol Evol ; 11(7): 1736-1750, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31192354

ABSTRACT

Nitrogen fixation in legumes occurs via symbiosis with rhizobia. This process involves packages of symbiotic genes on mobile genetic elements that are readily transferred within or between rhizobial species, furnishing the recipient with the ability to interact with plant hosts. However, it remains elusive whether plant host migration has played a role in shaping the current distribution of genetic variation in symbiotic genes. Herein, we examined the genetic structure and phylogeographic pattern of symbiotic genes in 286 symbiotic strains of Mesorhizobium nodulating black locust (Robinia pseudoacacia), a cross-continental invasive legume species that is native to North America. We conducted detailed phylogeographic analysis and approximate Bayesian computation to unravel the complex demographic history of five key symbiotic genes. The sequencing results indicate an origin of symbiotic genes in Germany rather than North America. Our findings provide strong evidence of prehistoric lineage splitting and spatial expansion events resulting in multiple radiations of descendent clones from founding sequence types worldwide. Estimates of the timescale of divergence in North American and Chinese subclades suggest that black locust-specific symbiotic genes have been present in these continent many thousands of years before recent migration of plant host. Although numerous crop plants, including legumes, have found their centers of origin as centers of evolution and diversity, the number of legume-specific symbiotic genes with a known geographic origin is limited. This work sheds light on the coevolution of legumes and rhizobia.


Subject(s)
Rhizobium/physiology , Robinia/microbiology , Root Nodules, Plant/microbiology , Bayes Theorem , Phylogeny , Symbiosis/genetics , Symbiosis/physiology
18.
Microbiol Res ; 217: 51-59, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30384908

ABSTRACT

Multiple heavy metals (HMs) commonly coexist in mining areas, which highlights the necessity to select multiple HM-resistant plant growth-promoting bacteria for improving phytoremediation efficiency. In this study, we isolated and characterized 82 endophytic bacteria from the root nodules of black locust (Robinia pseudoacacia) grown in a Pb-Zn mining area. There were 80 isolates showing resistance to four HMs, 0.01-18.0 mM/L for Cd, 0.2-40.0 mM/L for Zn, 0.3-2.2 mM/L for Pb, and 0.2-1.4 mM/L for Cu. Indole-3-acetic acid production, siderophore production, and 1-aminocyclopropane-1-carboxylate deaminase activity were detected in 43, 50, and 17 isolates, respectively. Two symbiotic isolates selected with the highest potential for HM resistance and PGP traits, designated Mesorhizobium loti HZ76 and Agrobacterium radiobacter HZ6, were evaluated for promotion of plant growth and metal uptake by R. pseudoacacia seedlings grown in pots containing different levels of Cd, Zn, Pb, or Cu. HZ76 significantly increased plant shoot biomass, while HZ6 did not, compared with non-inoculated controls. The results indicate that inoculation with HZ76 or HZ6 relieved HM stress in the plants, depending on the type and concentration of HM in the treatment. Mesorhizobium loti HZ76 may be a better candidate for application in phytoremediation than A. radiobacter HZ6. The microsymbiosis between HM-resistant rhizobia and R. pseudoacacia is an interesting mutualistic system for phytoremediation in mining areas contaminated with multiple HMs.


Subject(s)
Bacteria/drug effects , Bacteria/isolation & purification , Endophytes/drug effects , Endophytes/isolation & purification , Metals, Heavy/toxicity , Mining , Plant Development , Robinia/microbiology , Root Nodules, Plant/microbiology , Acclimatization , Agrobacterium tumefaciens/drug effects , Agrobacterium tumefaciens/isolation & purification , Agrobacterium tumefaciens/metabolism , Bacteria/classification , Bacteria/metabolism , Biodegradation, Environmental , Biomass , Carbon-Carbon Lyases/metabolism , DNA, Bacterial/analysis , Endophytes/classification , Endophytes/metabolism , Indoleacetic Acids/metabolism , Lead/toxicity , Mesorhizobium/drug effects , Mesorhizobium/isolation & purification , Mesorhizobium/metabolism , Microbial Sensitivity Tests , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizobium , Robinia/growth & development , Seedlings/growth & development , Siderophores/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Symbiosis , Zinc/toxicity
19.
Chemosphere ; 197: 729-740, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29407837

ABSTRACT

Heavy metals can cause serious contamination of soils, especially in mining regions. A detailed understanding of the effects of heavy metals on plants and root-associated microbial communities could help to improve phytoremediation systems. In this study, black locust (Robinia pseudoacacia) seedlings with or without rhizobial inoculation were planted in soils contaminated with different levels of heavy metals. Bacterial communities in rhizosphere and bulk soil samples were analyzed using 16S rRNA gene sequencing on the Illumina MiSeq platform and shotgun metagenome sequencing on the Illumina HiSeq platform. Soil bacterial communities varied significantly depending on the level of soil contamination, and planting also had some influence. Although inoculation of Mesorhizobium loti HZ76 (a natural microsymbiont of R. pseudoacacia) was a relatively minor factor, it did influence the soil bacterial community. Under the selective pressure, plant growth promotion-related biomarkers in the rhizosphere increased after inoculation compared with non-inoculated controls, especially those associated with Mesorhizobium, Variovorax, Streptomyces, and Rhodococcus genera. Genes encoding ATP-binding cassette transporters were up-regulated in the rhizosphere after inoculation compared with genes related to sulfur/nitrogen metabolism. These results provide insight into soil bacterial communities and their functions in the R. pseudoacacia rhizosphere in response to rhizobial inoculation and heavy metal contamination. This knowledge may prove useful for improving phytoremediation of metal-contaminated soils.


Subject(s)
Biodegradation, Environmental , Metals, Heavy/metabolism , Robinia/metabolism , Soil Pollutants/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Bacteria/metabolism , RNA, Ribosomal, 16S/genetics , Rhizobium , Rhizosphere , Soil Microbiology , Soil Pollutants/analysis
20.
Int J Syst Evol Microbiol ; 68(4): 1300-1306, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29485397

ABSTRACT

A novel endophytic bacterium, designated strain HZ10T, was isolated from root nodules of Robinia pseudoacacia growing in a lead-zinc mine in Mianxian County, Shaanxi Province, China. The bacterium was Gram-stain-negative, aerobic, motile, slightly curved- and rod-shaped, methyl red-negative, catalase-positive, and did not produce H2S. Strain HZ10T grew at 4-45 °C (optimum, 25-30 °C), pH 5-9 (optimum, pH 7-8) and 0-1 % (w/v) NaCl. The major fatty acids were identified as C16 : 0, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), and the quinone type was Q-8. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content of the genomic DNA was 64.9 mol% based on the whole genome sequence. According to the 16S rRNA gene sequence analysis, the closest phylogenetic relative to strain HZ10T is Herbaspirillum chlorophenolicum CPW301T (98.72 % sequence identity). Genome relatedness of the type strains H. chlorophenolicum CPW301T, Herbaspirillum seropedicae Z67T and Herbaspirillum aquaticum IEH 4430T, was quantified by using the average nucleotide identity (86.9-88.0 %) and a genome-to-genome distance analysis (26.6 %-29.3 %), with both strongly supporting the notion that strain HZ10T belongs to the genus Herbaspirillum as a novel species. Based on the results from phylogenetic, chemotaxonomic and physiological analyses, strain HZ10T represents a novel Herbaspirillum species, for which the name Herbaspirillum robiniae sp. nov. is proposed. The type strain is HZ10T (=JCM 31754T=CCTCC AB 2014352T).


Subject(s)
Herbaspirillum/cytology , Phylogeny , Robinia/microbiology , Root Nodules, Plant/microbiology , Soil Microbiology , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Herbaspirillum/genetics , Herbaspirillum/isolation & purification , Lead , Mining , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/chemistry , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL