Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chin Med ; 18(1): 86, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464384

ABSTRACT

BACKGROUND: Gout results from disturbed uric acid metabolism, which causes urate crystal deposition in joints and surrounding tissues. Gout pain management is largely limited to colchicine and nonsteroidal anti-inflammatory drugs. Constant usage of these medications leads to severe side effects. We previously showed electroacupuncture (EA) is effective for relieving pain in animal model of gout arthritis. Here we continued to study the mechanisms underlying how EA alleviates gout pain. METHODS: Monosodium urate was injected into ankle joint to establish gout arthritis model in mice. EA or sham EA was applied at ST36 and BL60 acupoints of model animals. Biochemical assays, immunostaining, live cell Ca2+ imaging and behavioral assays were applied. RESULTS: Model mice displayed obvious mechanical allodynia, accompanied with gait impairments. EA attenuated mechanical hypersensitivities and improved gait impairments. EA reduced the overexpression of NLRP3 inflammasome signaling molecules in ankle joints of model animals. EA-induced anti-allodynia, as well as inhibition on NLRP3 inflammasome, were mimicked by antagonizing but abolished by activating NLRP3 inflammasome via pharmacological methods. EA attenuated oxidative stress, an upstream signaling of NLRP3 inflammasome in ankle joints of model mice. Exogenously increasing oxidative stress abolished EA's inhibitory effect on NLRP3 inflammasome and further reversed EA's anti-allodynic effect. EA reduced neutrophil infiltrations in ankle joint synovium, a major mechanism contributing to oxidative stress in gout. Pharmacological blocking NLRP3 inflammasome or EA reduced TRPV1 channel overexpression in dorsal root ganglion (DRG) neurons. Ca2+ imaging confirmed that EA could reduce functional enhancement in TRPV1 channel in DRG neurons during gout. CONCLUSIONS: Our results demonstrate that EA reduces gout pain possibly through suppressing ROS-mediated NLRP3 inflammasome activation in inflamed ankle joints and TRPV1 upregulation in sensory neurons, supporting EA as a treatment option for gout pain.

2.
Front Cell Neurosci ; 16: 826777, 2022.
Article in English | MEDLINE | ID: mdl-35693886

ABSTRACT

Complex regional pain syndrome type-I (CRPS-I) is a chronic neurological disorder that results in severe pain and affects patients' life quality. Conventional therapies usually lack effectiveness. Electroacupuncture (EA) is an effective physical therapy for relieving CRPS-I pain. However, the mechanism underlying EA-induced analgesia on CRPS-I still remain unknown. Spinal NLRP3 inflammasome was recently identified to contribute to pain and neuroinflammation in a rat model of CRPS-I by our group. Here, we aimed to study whether EA could inhibit spinal NLRP3 inflammasome activation, thus resulting in pain relief and attenuation of spinal neuroinflammation in the rat model of CRPS-I. We established the rat chronic post-ischemic pain (CPIP) model to mimic CRPS-I. CPIP rats developed remarkable mechanical allodynia that could be relieved by daily EA intervention. NLRP3 inflammasome was activated in spinal cord dorsal horn (SCDH) of CPIP rats, accompanied with over-production of pro-inflammatory cytokine IL-1ß. Immunostaining revealed that the cellular distribution of NLRP3 was predominantly located in SCDH neurons. Pharmacological activation of NLRP3 inflammasome per se is sufficient to produce persistent mechanical allodynia in naïve animals, whereas blocking NLRP3 inflammasome attenuates mechanical allodynia of CPIP rats. EA exclusively reduced NLRP3 overexpression in SCDH neurons and attenuated spinal glial cell over-activation in CPIP rats. EA-induced anti-allodynia with attenuation of spinal glial cell over-activation were all mimicked by intrathecal blocking NLRP3 inflammasome and reversed by activating NLRP3 inflammasome, respectively, through pharmacological methods. Finally, spinal blocking IL-1ß attenuated mechanical allodynia and spinal glial cell over-activation in CPIP rats, resembling the effects of EA. In all, these results demonstrate that spinal NLRP3 inflammasome activation contributes to mechanical allodynia of the rat model of CRPS-I and EA ameliorates mechanical allodynia through inhibiting NLRP3 inflammasome activation in SCDH neurons. Our study further supports EA can be used as an effective treatment for CRPS-I.

SELECTION OF CITATIONS
SEARCH DETAIL