Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Affiliation country
Publication year range
1.
Huan Jing Ke Xue ; 43(10): 4755-4764, 2022 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-36224161

ABSTRACT

To illustrate the effects of long-term straw returning on the fungal community, soil enzyme activity, and crop yield in a fluvo-aquic soil area typical of the Huang-Huai-Hai Plain, a 10-year field experiment (established in 2010) located in Dezhou City, Shandong province, was performed, including three fertilization regimes (NF, no fertilization control; NPK, fertilization with chemical N, P, and K fertilizers; NPKS, straw returning combined with chemical N, P, and K fertilizers). This study aimed to explore the regulation mechanisms of fungal communities on soil fertility, enzyme activities, and crop yield by employing co-occurrence network and structural equation model analyses. Our results showed that long-term straw returning significantly improved soil nutrients, enzyme activity, and wheat yield. Compared with the NPK and NF treatments, soil organic matter (SOM) increased by 9.20% and 34.75%, alkali-hydrolyzed nitrogen (AN) increased by 12.03% and 39.17%, dehydrogenase (DHA) increased by 37.21% and 50.91%, ß-glucosidase (ß-GC) increased by 17.29% and 73.48%, and wheat production increased by 16.22% and 125.53%, respectively. Different long-term fertilization regimes did not significantly change soil fungal α-diversity but resulted in significant differences in ß-diversity. Available phosphorus (AP), SOM, and AN were the main driving factors of fungal community differentiation based on redundancy analysis and hierarchical partitioning analysis. Different abundance analyses revealed significantly different fungal community compositions among fertilization regimes. The long-term NF treatment resulted in a significant enrichment of phosphate/potassium-solubilizing species (i.e., Mortierella, Aspergillus, Ceriporia, and Acremonium) and symbiotic species (i.e., Leohumicola and Hyalodendriella). The relative abundance of pathogenic fungi, namely Sarocladium, Fusarium, and Fusicolla, increased significantly in the NPK treatment. Long-term straw returning in the NPKS treatment significantly stimulated the growth of plant growth-promoting species (i.e., Pseudogymnoascus and Schizothecium) and straw-degrading species (i.e., Trichocladium and Lobulomyces). Co-occurrence network analysis showed that the fungal network was composed of four main modules; the cumulative relative abundance of module 2 was significantly increased under the NPKS treatment and showed a positive linear correlation with DHA and ß-GC. The structural equation model further indicated that the wheat yield was mainly regulated by SOM, whereas species of module 2 could indirectly affect SOM and wheat yield by positively regulating DHA and ß-GC. Taken together, long-term straw returning to the fluvo-aquic soil area of the Huang-Huai-Hai Plain could regulate fungal interspecific interactions, stimulate the growth of specific species groups, inhibit the activity of pathogens, increase the activity of soil enzymes, promote the accumulation of SOM, and achieve high crop yield.


Subject(s)
Mycobiome , Soil , Agriculture/methods , Alkalies , Fertilizers/analysis , Nitrogen/analysis , Oxidoreductases , Phosphates/analysis , Phosphorus/analysis , Potassium/chemistry , Soil/chemistry , Soil Microbiology , Triticum , beta-Glucosidase
2.
PeerJ ; 9: e11706, 2021.
Article in English | MEDLINE | ID: mdl-34221743

ABSTRACT

BACKGROUND: Allium fistulosum L. has good nutritional value and is cultivated worldwide as an efficacious traditional medicinal plant. Its biological activities are attributable to its phytochemicals. Nitrogen is an essential nutrient for plant growth and development; however, the effect of nitrogen levels on the level of active components in this species is not well understood. METHODS: In this study, using urea fertilizer, we investigated the effects of different nitrogen levels (N0, N1, and N2 at 0, 130, and 260 kg/ha, respectively) on the phytochemical constituents , and antioxidant and anticancer properties of A. fistulosum. RESULTS: The results suggested that nitrogen fertilizers have a significant effect on the level of total phenols and flavonoids. The analysis of the antioxidant capacity revealed that the lowest IC50 values corresponded to plants treated with the highest nitrogen concentration. Anticancer activity was investigated against cancer cell lines (HeLa and HepG2), and the extracts of A. fistulosum treated with a high nitrogen level showed the highest antiproliferative effect. Collectively, our results suggest that nitrogen fertilizer application enhanced the quality of A. fistulosum, particularly its health benefits.

SELECTION OF CITATIONS
SEARCH DETAIL