Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Int J Med Mushrooms ; 26(3): 1-13, 2024.
Article in English | MEDLINE | ID: mdl-38505899

ABSTRACT

Edible mushrooms have rich nutrition (e.g., proteins, dietary fibers, polysaccharides) and they can be potential sources of important ingredients in food processing. However, the cultivation of mushroom fruiting bodies needs a relatively long time, and they can be easily polluted during the growth process. At the same time, a lot of labor and larger planting areas are also required. As we all know, submerged fermentation is a good way to produce edible mushroom mycelia with less environmental pollution and small footprint, which are also rich in nutrition and bioactive components that are used as dietary supplements or health care products in the food industry. Therefore, it can be considered that the replacement of edible mushroom fruiting bodies with edible mushroom mycelia produced through submerged fermentation has great application potential in food production. At present, most of the research about edible mushroom mycelia focuses on the production of bioactive metabolites in fermentation liquid, but there are few reports that concentrate on their applications in food. This paper reviews the research progress of submerged culture of edible mushroom mycelia and their applications in food products.


Subject(s)
Agaricales , Agaricales/metabolism , Dietary Supplements , Fermentation , Dietary Fiber , Mycelium
2.
Planta Med ; 90(5): 353-367, 2024 May.
Article in English | MEDLINE | ID: mdl-38295847

ABSTRACT

Gambogenic acid is a derivative of gambogic acid, a polyprenylated xanthone isolated from Garcinia hanburyi. Compared with the more widely studied gambogic acid, gambogenic acid has demonstrated advantages such as a more potent antitumor effect and less systemic toxicity than gambogic acid according to early investigations. Therefore, the present review summarizes the effectiveness and mechanisms of gambogenic acid in different cancers and highlights the mechanisms of action. In addition, drug delivery systems to improve the bioavailability of gambogenic acid and its pharmacokinetic profile are included. Gambogenic acid has been applied to treat a wide range of cancers, such as lung, liver, colorectal, breast, gastric, bladder, and prostate cancers. Gambogenic acid exerts its antitumor effects as a novel class of enhancer of zeste homolog 2 inhibitors. It prevents cancer cell proliferation by inducing apoptosis, ferroptosis, and necroptosis and controlling the cell cycle as well as autophagy. Gambogenic acid also hinders tumor cell invasion and metastasis by downregulating metastasis-related proteins. Moreover, gambogenic acid increases the sensitivity of cancer cells to chemotherapy and has shown effects on multidrug resistance in malignancy. This review adds insights for the prevention and treatment of cancers using gambogenic acid.


Subject(s)
Antineoplastic Agents , Xanthenes , Animals , Apoptosis , Cell Line, Tumor , Xanthenes/pharmacology , Xanthenes/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
3.
Midwifery ; 127: 103832, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37820437

ABSTRACT

BACKGROUND: Upright positions, as a non-pharmacological, have been well documented in multiple studies to promote normal labor, facilitate favourable birth outcomes and positive childbirth experience. Yet, the application status of upright positions in China, and even globally, is unfavourable. Thus, we have developed the Program for Upright Positions in the Second Stage of Labor (UPSSL program) for the widespread application of upright positions. While there is limited research evidence on the areas of improvement and corresponding strategies for embedding the evidence into midwifery practice. OBJECTIVES: To explore perspectives of health care providers on improvement areas of upright positions in the second stage of labor, and to identify corresponding strategies in order to develop a management framework for successful implementation of upright positions. METHODS: A qualitative descriptive design with semi-structured interviews was conducted in the study. The participants involving 13 midwives, six obstetricians and six department managers were selected from three hospitals in Beijing, China. ATLAS.TI 8 software was utilized to manage, identify the transcript data, and the thematic analysis method guided the data analysis. RESULTS: A management framework of upright positions in the second stage of labor was developed based on our study, which included five improvement areas : (1) promoting the renewal of midwifery notions and the professional training;(2) strengthening maternal health education based on the "trinity" approach; (3) promoting multidisciplinary cooperation and refining the labor procedures in upright positions; (4) optimizing midwifery human resource allocation and formulating incentive policies; (5) encouraging partner involvement and improving the birth environment. CONCLUSIONS: The study findings could provide a comprehensive view to promote UPSSL Program to be utilized in practice. Our study also provided a way for midwives, obstetricians, and other healthcare providers to work together to facilitate high quality maternal care. IMPLICATIONS FOR PRACTICE: Our findings will be useful for nursing managers to carry out the UPSSL program through several strategies, such as strengthening the professional training for assisting labor in the upright positions, reallocating midwifery human resources, and developing the childbirth education on the upright positions.


Subject(s)
Labor Stage, Second , Midwifery , Pregnancy , Female , Humans , Delivery, Obstetric/methods , Midwifery/methods , Qualitative Research , Family
4.
Drug Des Devel Ther ; 17: 2909-2929, 2023.
Article in English | MEDLINE | ID: mdl-37753228

ABSTRACT

Cancer, as the leading cause of death worldwide, poses a serious threat to human health, making the development of effective tumor treatments a significant challenge. Natural products continue to serve as crucial resources for drug discovery. Among them, Withaferin A (WA), the most active phytocompound extracted from the renowned dietary supplement Withania somnifera (L.) Dunal, exhibits remarkable anti-tumor efficacy. In this manuscript, we aim to comprehensively summarize the pharmacological characteristics of WA as a potential anti-tumor drug candidate, with the objective of contributing to its further development and the discovery of prospective drugs. Through an extensive review of literature from PubMed, Science Direct, and Web of Science, we have gathered substantial evidence showcasing WA's significant anti-tumor effects against a wide range of cancers in both in vitro and in vivo studies. Mechanistically, WA exerts its anti-tumor influence by inducing cell cycle arrest, apoptosis, autophagy, and ferroptosis. Additionally, it inhibits cell proliferation, cancer stem cells, tumor metastasis, and also suppresses epithelial-mesenchymal transition (EMT) and angiogenesis. Several studies have identified direct target proteins of WA, such as vimentin, Hsp90, annexin II and mFAM72A, while BCR-ABL, Mortalin (mtHsp70), Nrf2, and c-MYB are potential targets of WA. Notwithstanding its remarkable anti-tumor efficacy, there are some limitations associated with WA, including potential toxicity and poor oral bioavailability, which need to be addressed when considering it as an anti-tumor candidate agent. Nevertheless, I given its promising anti-tumor attributes, WA remains an encouraging candidate for future drug development. Unveiling the exact target and comprehensive mechanism of WA's action represents a crucial research direction to pursue in the future.


Subject(s)
Neoplasms , Withanolides , Humans , Neoplasms/drug therapy , Withanolides/pharmacology , Biological Availability , Dietary Supplements
5.
J Am Chem Soc ; 145(31): 17377-17388, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37497917

ABSTRACT

The five-year survival rate of hepatocellular carcinoma (HCC) remains unsatisfactory. This reflects, in part, the paucity of effective methods that allow the target-specific diagnosis and therapy of HCC. Here, we report a strategy based on engineered human serum albumin (HSA) that permits the HCC-targeted delivery of diagnostic and therapeutic agents. Covalent cysteine conjugation combined with the exploitation of host-guest chemistry was used to effect the orthogonal functionalization of HSA with two functionally independent peptides. One of these peptides targets glypican-3 (GPC-3), an HCC-specific biomarker, while the second reduces macrophage phagocytosis through immune-checkpoint stimulation. This orthogonally engineered HSA proved effective for the GPC-3-targeted delivery of near-infrared fluorescent and phototherapeutic agents, thus permitting target-specific optical visualization and photodynamic ablation of HCC in vivo. This study thus offers new insights into specificity-enhanced fluorescence-guided surgery and phototherapy of HCC through the orthogonal engineering of biocompatible proteins.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/therapy , Phototherapy/methods , Albumins , Serum Albumin, Human , Macrophages/metabolism , Phagocytosis
6.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446090

ABSTRACT

TIFY is a plant-specific gene family with four subfamilies: ZML, TIFY, PPD, and JAZ. Recently, this family was found to have regulatory functions in hormone stimulation, environmental response, and development. However, little is known about the roles of the TIFY family in Tartary buckwheat (Fagopyrum tataricum), a significant crop for both food and medicine. In this study, 18 TIFY family genes (FtTIFYs) in Tartary buckwheat were identified. The characteristics, motif compositions, and evolutionary relationships of the TIFY proteins, as well as the gene structures, cis-acting elements, and synteny of the TIFY genes, are discussed in detail. Moreover, we found that most FtTIFYs responded to various abiotic stresses (cold, heat, salt, or drought) and hormone treatments (ABA, MeJA, or SA). Through yeast two-hybrid assays, we revealed that two FtTIFYs, FtTIFY1 and FtJAZ7, interacted with FtABI5, a homolog protein of AtABI5 involved in ABA-mediated germination and stress responses, implying crosstalk between ABA and JA signaling in Tartary buckwheat. Furthermore, the overexpression of FtJAZ10 and FtJAZ12 enhanced the heat stress tolerance of tobacco. Consequently, our study suggests that the FtTIFY family plays important roles in responses to abiotic stress and provides two candidate genes (FtJAZ10 and FtJAZ12) for the cultivation of stress-resistant crops.


Subject(s)
Fagopyrum , Fagopyrum/metabolism , Phylogeny , Plant Proteins/metabolism , Stress, Physiological/genetics , Hormones/metabolism , Gene Expression Regulation, Plant
7.
Altern Ther Health Med ; 29(7): 133-137, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37442194

ABSTRACT

Objective: The objective of this study is to evaluate the efficacy and safety of the gasless trans-axillary parathyroidectomy approach for the treatment of primary hyperparathyroidism in our medical center. Methods: A retrospective analysis was conducted on patients with single parathyroid adenoma who underwent parathyroidectomy using the gasless trans-axillary approach. Results: Between June 2020 and June 2022, 41 patients (37 women and 4 men) with primary hyperparathyroidism underwent endoscopic parathyroidectomy utilizing the gasless trans-axillary approach. Postoperative levels of parathyroid hormone and calcium showed a significant decline following the procedure. No permanent damage to the recurrent laryngeal nerve was observed. The mean adenoma size was 19.2 mm, with a volume of 2.66 mL. Successful identification and resolution of hyperparathyroidism were achieved for all patients. Conclusions: Endoscopic gasless trans-axillary parathyroidectomy is a safe and viable option for patients with primary hyperparathyroidism who wish to avoid cervical scarring. The surgical outcomes were favorable, and no major complications were encountered.

8.
Food Chem ; 418: 135905, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-36966720

ABSTRACT

Three zeolitic imidazolate frameworks (ZIFs) materials including ZIF-8 (H2O), ZIF-8 (methanol) and ZIF-L were synthesized and applied to the adsorption and detoxification of gossypol in cottonseed oil. The characterization results showed three ZIFs materials had good crystal structure, thermal stability and high specific surface area. The ZIFs materials had also good adsorption performance for gossypol and their adsorption processes can be described by the pseudo-second-order adsorption kinetic models. Adsorption isotherm analysis indicated that Langmuir model expressed a better conformity than Freundlich model, suggesting that the adsorption was the single-layer adsorption on a uniform site. Furthermore, the spiked experiment showed that the detoxification rate of ZIFs materials in vegetable oil was 72-86 %. A satisfied detoxification rate of 50-70 % was found in the detoxification experiment of real cottonseed oil samples. Therefore, these results demonstrate the great potential of using ZIFs materials as detoxification in cottonseed oil.


Subject(s)
Gossypol , Nanoparticles , Zeolites , Imidazoles/chemistry , Cottonseed Oil , Zeolites/chemistry , Adsorption
9.
J Agric Food Chem ; 70(49): 15347-15359, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36468534

ABSTRACT

3-Monochloropropane-1,2-diol esters (3-MCPDE) are common food contaminants mainly formed in the edible oil refining process. Due to their potential hazards, 3-MCPDE has become a widespread food safety concern. In this study, CiteSpace and VOSviewer were used to conduct a bibliometric analysis on the 3-MCPDE research papers collected in the Web of Science Core Collection from 1998 to 2022. The results showed that the number of research publications on 3-MCPDE has increased rapidly since 2010. Analysis of the hotspots in 3-MCPDE studies showed that more attention has been paid to the exposure assessment, formation mechanism, detection methods, mitigation methods and toxicity, and toxicology of 3-MCPDE. Finally, the future trends of research on 3-MCPDE were analyzed and proposed. The mitigation methods and toxicology studies of 3-MCPDE are still the research hotspots in the future. In addition, nutritional intervention for 3-MCPDE toxicity will be an emerging trend.


Subject(s)
alpha-Chlorohydrin , alpha-Chlorohydrin/analysis , Esters/analysis , Palm Oil , Bibliometrics
10.
Int J Mol Sci ; 23(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35409160

ABSTRACT

The human males absent on the first (MOF)-containing non-specific lethal (NSL) histone acetyltransferase (HAT) complex acetylates histone H4 at lysine K5, K8, and K16. This complex shares several subunits with other epigenetic regulatory enzymes, which highlights the complexity of its intracellular function. However, the effect of the NSL HAT complex on the genome and target genes in human cells is still unclear. By using a CRISPR/Cas9-mediated NSL3-knockout 293T cell line and chromatin immunoprecipitation-sequencing (ChIP-Seq) approaches, we identified more than 100 genes as NSL HAT transcriptional targets, including several transcription factors, such as Yin Yang 1 (YY1) which are mainly involved in cell proliferation, biological adhesion, and metabolic processes. We found here that the ChIP-Seq peaks of MOF and NSL3 co-localized with H4K16ac, H3K4me2, and H3K4me3 at the transcriptional start site of YY1. In addition, both the mRNA and protein expression levels of YY1 were regulated by silencing or overexpressing NSL HAT. Interestingly, the expression levels of cell division cycle 6, a downstream target gene of YY1, were regulated by MOF or NSL3. In addition, the suppressed clonogenic ability of HepG2 cells caused by siNSL3 was reversed by overexpressing YY1, suggesting the involvement of YY1 in NSL HAT functioning. Additionally, de novo motif analysis of MOF and NSL3 targets indicated that the NSL HAT complex may recognize the specific DNA-binding sites in the promoter region of target genes in order to regulate their transcription.


Subject(s)
Histone Acetyltransferases , YY1 Transcription Factor , Cell Nucleus/metabolism , Cell Proliferation/genetics , Histone Acetyltransferases/metabolism , Humans , YY1 Transcription Factor/genetics
11.
Ecotoxicol Environ Saf ; 234: 113423, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35307619

ABSTRACT

'Xuegan' (Citrus sinensis) seedlings were fertilized 6 times weekly for 24 weeks with 0.5 or 350 µM CuCl2 and 2.5, 10 or 25 µM H3BO3. Cu-toxicity increased Cu uptake per plant (UPP) and Cu concentrations in leaves, stems and roots, decreased water uptake and phosphorus, nitrogen, calcium, magnesium, potassium, sulfur, boron and iron UPP, and increased the ratios of magnesium, potassium, calcium and sulfur UPP to phosphorus UPP and the ratios of leaf magnesium, potassium and calcium concentrations to leaf phosphorus concentration. Many decaying and dead fibrous roots occurred in Cu-toxic seedlings. Cu-toxicity-induced alterations of these parameters and root damage decreased with the increase of boron supply. These results demonstrated that B supplementation lowered Cu uptake and its concentrations in leaves, stems and roots and subsequently alleviated Cu-toxicity-induced damage to root growth and function, thus improving plant nutrient (decreased Cu uptake and efficient maintenance of the other nutrient homeostasis and balance) and water status. Further analysis indicated that the improved nutrition and water status contributed to the boron-mediated amelioration of Cu-toxicity-induced inhibition of seedlings, decline of leaf pigments, large reduction of leaf CO2 assimilation and impairment of leaf photosynthetic electron transport chain revealed by greatly altered chlorophyll a fluorescence (OJIP) transients, reduced maximum quantum yield of primary photochemistry (Fv/Fm), quantum yield for electron transport (ETo/ABS) and total performance index (PIabs,total), and elevated dissipated energy per reaction center (DIo/RC). To conclude, our findings corroborate the hypothesis that B-mediated amelioration of Cu-toxicity involved reduced damage to roots and improved nutrient and water status. Principal component analysis showed that Cu-toxicity-induced changes of above physiological parameters generally decreased with the increase of B supply and that B supply-induced alterations of above physiological parameters was greater in 350 µM Cu-treated than in 0.5 µM Cu-treated seedlings. B and Cu had a significant interactive influence on C. sinensis seedlings.

12.
Antiviral Res ; 198: 105254, 2022 02.
Article in English | MEDLINE | ID: mdl-35101534

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a newly emerged infectious disease caused by a novel coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid global emergence of SARS-CoV-2 highlights the importance and urgency for potential drugs to control the pandemic. The functional importance of RNA-dependent RNA polymerase (RdRp) in the viral life cycle, combined with structural conservation and absence of closely related homologs in humans, makes it an attractive target for designing antiviral drugs. Nucleos(t)ide analogs (NAs) are still the most promising broad-spectrum class of viral RdRp inhibitors. In this study, using our previously developed cell-based SARS-CoV-2 RdRp report system, we screened 134 compounds in the Selleckchemicals NAs library. Four candidate compounds, Fludarabine Phosphate, Fludarabine, 6-Thio-20-Deoxyguanosine (6-Thio-dG), and 5-Iodotubercidin, exhibit remarkable potency in inhibiting SARS-CoV-2 RdRp. Among these four compounds, 5-Iodotubercidin exhibited the strongest inhibition upon SARS-CoV-2 RdRp, and was resistant to viral exoribonuclease activity, thus presenting the best antiviral activity against coronavirus from a different genus. Further study showed that the RdRp inhibitory activity of 5-Iodotubercidin is closely related to its capacity to inhibit adenosine kinase (ADK).


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Nucleic Acid Synthesis Inhibitors/pharmacology , SARS-CoV-2/drug effects , Tubercidin/analogs & derivatives , Cell Line , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/pharmacology , Drug Evaluation, Preclinical/methods , HEK293 Cells , Humans , Microbial Sensitivity Tests , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/genetics , Thionucleosides/pharmacology , Tubercidin/pharmacology , Vidarabine/analogs & derivatives , Vidarabine/pharmacology , Vidarabine Phosphate/analogs & derivatives , Vidarabine Phosphate/pharmacology
13.
Acta Pharmaceutica Sinica ; (12): 507-513, 2022.
Article in Chinese | WPRIM | ID: wpr-922927

ABSTRACT

The key factors for producing the best quality Chinese herbal medicines are high-quality germplasm, suitable cultivation area and the proper processing methods for herbal raw materials. Gentiana crassicaulis in Gentiana (Sect. Cruciata), Gentianaceae is one of the original plants of the Chinese herb Qinjiao (Gentianae Macrophyllae Radix), and its type specimen was collected in Lijiang, Yunnan. There is a long planting history of the herb in this area. In this study a sampling plot was designated in these traditional planting areas. G. crassicaulis was planted and herbal raw materials were harvested from the plot. The raw materials were prepared locally and at a pharmaceutical factory in Shanghai using processing methods such as "sweating" or "no sweating", "slicing" or "no slicing" (whole root), and "stoving" or "no stoving" (air drying). The quality of all processed samples was evaluated. In addition, molecular markers were determined for identifying cultivated and wild samples from Lijiang, Yunnan. The results are as follows: ① Samples from the sampling plot and the field are taxonomically identified as Gentiana crassicaulis. ② A total of 270 sequences of trnC-GCA-petN, atpB-rbcL, psbN, ndhB-rps7 and ycf1 were obtained, and three genotypes were determined from the cultivated samples; the type III was shared by both cultivated and wild plants. Based on the molecular markers, a DNA barcoding method to identify cultivated and wild samples of G. crassicaulis from Lijiang, Yunnan was established. ③ Total content of loganic acid and gentiopicroside in all samples was ≥ 2.5%, and above the Chinese Pharmacopoeia (2020) limit. ④ In HPLC fingerprinting, 9 common peaks were assigned and similarity between all samples was > 0.999; and ⑤ In a PCA score plot all slice samples were clustered, while whole root samples were scattered. Therefore, our studies could provide basic data for optimizing the processing method, producing best quality Gentianae Macrophyllae Radix, and evaluating the quality of different ecotype varieties and the multiple origin of herbal medicines.

14.
Article in Chinese | WPRIM | ID: wpr-940560

ABSTRACT

ObjectiveTo study the chemical structure of gardenia blue pigment and its inhibitory activity against monoamine oxidase B (MAO-B), in order to seek a potential feasible way for rational utilization and value enhancement of iridoids in Gardeniae Fructus. MethodIridoid glycosides in Gardeniae Fructus were hydrolyzed by cellulase to obtain their aglycones and reacted with amino acids. Then, the products were purified by column chromatography packed with D101 macroporous resin and preparative liquid chromatography to obtain gardenia blue pigments, and the gardenia blue pigments were identified by nuclear magnetic resonance (NMR) and mass spectrometry (MS). Benzylamine was used as the reaction substrate of MAO-B and in vitro incubated with gardenia blue pigment monomers, high performance liquid chromatography (HPLC) was employed to determine the production of benzaldehyde for evaluating the inhibitory effect of gardenia blue pigments on MAO-B, the mobile phase was methanol (A) -50 mmol·L-1 potassium phosphate buffer (B, pH 3.2) (2∶3), and the detection wavelength was 245 nm. ResultEight compounds of gardenia blue pigment A-H were synthesized and identified. In MAO-B inhibition test, compared with geniposide, the inhibitory activity of gardenia blue pigment D and E was significantly enhanced (P<0.05). Compared with the 6β-hydroxygeniposide, the inhibitory activity of gardenia blue pigment G and H was significantly enhanced (P<0.05, P<0.01). All the four gardenia blue pigments showed better MAO-B inhibitory activity than the prototype compounds. ConclusionGardenia blue pigment is a simple compound formed by one molecule of amino acid and one molecule of iridoid. Some gardenia blue pigments have better MAO-B inhibitory activity than the prototype compounds. The activity of gardenia blue pigment produced by different substrates is different, and the high-value gardenia blue pigment can be prepared based on experimental optimization, which can expand the application range of gardenia blue pigment and enrich the comprehensive utilization of iridoids from Gardeniae Fructus.

15.
Endocrine ; 75(2): 583-592, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34748169

ABSTRACT

PURPOSE: Current guidelines for calcium supplementation for parathyroid function recovery after thyroidectomy are based on low-quality evidence. The present trial compared the effects of oral calcium and vitamin D supplementation on the recovery of parathyroid function when administered routinely or exclusively to symptomatic patients. METHODS: This prospective, randomized, open-label clinical trial analyzed 203 patients who underwent total thyroidectomy and developed hypoparathyroidism on postoperative day 1 (POD1) with median age of 41 years and proportion of women of 77.8%. Participants were randomized to group A (calcium and vitamin D supplementation administered only to symptomatic patients) and group B (routine supplementation). The primary outcome was the incidence of protracted hypoparathyroidism in the two groups. Secondary outcomes included risk factors for postoperative protracted hypoparathyroidism and the incidence of symptomatic hypocalcemia. RESULTS: The incidence of protracted hypoparathyroidism was not significantly different between group A and group B (11 of 99 vs. 17 of 104, P = 0.280). Parathyroid hormone (PTH) in group B exhibited a better recovery tendency. The incidence of postoperative symptomatic hypocalcemia in group B was significantly lower than group A (26.92% vs. 42.42%, P = 0.020). Independent factors predicting protracted hypoparathyroidism included sex, preoperative serum calcium, and POD1 PTH. CONCLUSION: Calcium and vitamin D supplementation administered exclusively to symptomatic patients achieved the same effect on protracted hypoparathyroidism as routine supplementation. However, routine supplementation significantly reduced postoperative hypocalcemia. Extra attention is necessary in female patients with high preoperative serum calcium and patients with low POD1 PTH. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR), ChiCTR1900022194. Registered March 30, 2019.


Subject(s)
Hypocalcemia , Hypoparathyroidism , Adult , Calcium/therapeutic use , Dietary Supplements , Female , Humans , Hypocalcemia/epidemiology , Hypocalcemia/etiology , Hypocalcemia/prevention & control , Hypoparathyroidism/epidemiology , Hypoparathyroidism/etiology , Hypoparathyroidism/prevention & control , Parathyroid Hormone , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Prospective Studies , Thyroidectomy/adverse effects
16.
Front Psychiatry ; 12: 774192, 2021.
Article in English | MEDLINE | ID: mdl-34925101

ABSTRACT

Background: Repetitive transcranial magnetic stimulation (rTMS) has therapeutic effects on craving in methamphetamine (METH) use disorder (MUD). The chronic abuse of METH causes impairments in executive function, and improving executive function reduces relapse and improves treatment outcomes for drug use disorder. The purpose of this study was to determine whether executive function helped predict patients' responses to rTMS treatment. Methods: This study employed intermittent theta burst stimulation (iTBS) rTMS modalities and observed their therapeutic effects on executive function and craving in MUD patients. MUD patients from an isolated Drug Rehabilitation Institute in China were chosen and randomly allocated to the iTBS group and sham-stimulation group. All participants underwent the Behavior Rating Inventory of Executive Function - Adult Version Scale (BRIEF-A) and Visual Analog Scales (VAS) measurements. Sixty-five healthy adults matched to the general condition of MUD patients were also recruited as healthy controls. Findings: Patients with MUD had significantly worse executive function. iTBS groups had better treatment effects on the MUD group than the sham-stimulation group. Further Spearman rank correlation and stepwise multivariate regression analysis revealed that reduction rates of the total score of the BRIEF-A and subscale scores of the inhibition factor and working memory factor in the iTBS group positively correlated with improvements in craving. ROC curve analysis showed that working memory (AUC = 87.4%; 95% CI = 0.220, 0.631) and GEC (AUC = 0.761%; 95% CI = 0.209, 0.659) had predictive power to iTBS therapeutic efficacy. The cutoff values are 13.393 and 59.804, respectively. Conclusions: The iTBS rTMS had a better therapeutic effect on the executive function of patients with MUD, and the improved executive function had the potential to become a predictor for the efficacy of iTBS modality for MUD treatment. Clinical Trial Registration: ClinicalTrials.gov, identifier: ChiCTR2100046954.

17.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4531-4540, 2021 Sep.
Article in Chinese | MEDLINE | ID: mdl-34581059

ABSTRACT

This study aims to explore underlying mechanism of Lonicerae Japonicae Flos(LJF) in protecting rats against acute alcoholic liver injury(ALI) based on mitogen-activated protein kinase(MAPK) pathway. First, the targets of LJF in preventing ALI were predicted by network pharmacology and the component-target-pathway network was constructed, so that the key targets of LJF components acting on MAPK pathway were screened. Second, male SD rats were randomized into the control(KB) group, model(MX) group, positive(YX) group, and LJF high-(GJ), medium-(ZJ), and low-(DJ) dose groups. Each administration group was given(ig) corresponding drugs for 7 days and KB group and MX group received(ig) equal volume of distilled water every day. Except for KB group, rats were given Chinese spirit(56%, 3 days) for ALI modeling. The levels of aspartate transaminase(AST), alanine transaminase(ALT), interleukin-6(IL6) and tumor necrosis factor-α(TNF-α) in serum and malondialdehyde(MDA), glutathione(GSH), superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px) in liver tissue of rats in each group were detected. Furthermore, we employed quantitative real-time PCR(qRT-PCR) to probe the effects of LJF on the key targets of MAPK pathway in ALI rats. A total of 28 active components of LJF were screened from TCMSP database, and 317 intersected with ALI-related targets. According to Kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis, the 317 targets involved 226 pathways, which were mainly liver disease, inflammation, immunity, apoptosis and other related pathways. According to the MAPK pathway-target-active component network, the key active components of LJF, such as chlorogenic acid, hederagenol, and hyperoside, acted on 25 key targets of MAPK pathway. The results of in vivo experiments showed decreased levels of AST, ALT, and MDA in DJ, ZJ, and GJ groups(P<0.01 or P<0.05), reduced levels of IL6 in DJ and GJ groups(P<0.01 or P<0.05), and improved levels of SOD and GSH in ZJ and GJ groups(P<0.01 or P<0.05). The results of qRT-PCR demonstrated that the expression levels of mitogen-activated protein kinase kinase 4(MAPK2 K4) and mitogen-activated protein kinase 3(MAPK3) were decreased in DJ, ZJ, and GJ groups(P<0.01). The network pharmacology and experimental verification showed that the active components in LJF can reduce the inflammatory factor level and enhance the activities of SOD and GSH-Px by inhibiting the expression of key targets of MAPK pathway, thus alleviating and preventing liver damage caused by alcohol.


Subject(s)
Drugs, Chinese Herbal , Liver Diseases , Animals , Chlorogenic Acid , Liver , Male , Rats , Rats, Sprague-Dawley
18.
Zhongguo Zhong Yao Za Zhi ; 46(18): 4704-4711, 2021 Sep.
Article in Chinese | MEDLINE | ID: mdl-34581079

ABSTRACT

As the main chemical constituents, iridoids are widely distributed within Gentiana, Gentianaceae, with promising bioactivities. Based on the previous work, the transcriptome of G. lhassica, an original plant of Tibetan herb "Jieji Nabao", was sequenced and analyzed in this study, and the transcriptome databases of roots, stems, leaves, and flowers were constructed so as to explore unigenes that may encode the key enzymes in the biosynthetic pathway of iridoids. Then, qRT-PCR was used to validate the relative expression levels of 11 genes named AACT, DXS, MCS, HDS, IDI, GPPS, GES, G10H, 7-DLNGT, 7-DLGT, and SLS in roots, stems, leaves, and flowers. Also, the total contents of gentiopicroside and loganic acid were determined by HPLC, respectively. The results are as follows:(1)a total of 76 486 unigenes with an average length of 852 bp were obtained;(2)335 unigenes were involved in 19 stan-dard secondary metabolism pathways in KEGG database, with phenylpropanoid biosynthesis having the maximum number(75 unigenes), and no isoflavone biosynthetic pathway was annotated;(3)171 unigenes participatedin 27 key enzymes encoding in the biosynthetic pathway of iridoids, and 1-deoxy-D-xylulose-5-phosphate reductoisomerase(DXR) gene was highly expressed;(4)qRT-PCR results were approximately consistent with RNA-Seq data and the relative expression levels of the 11 genes were higher in the aboveground parts(stem, leaf, and flower) than in the underground part(root);(5)the total contents of gentiopicroside and loganic acid were higher in the aboveground parts(stem, leaf, and flower) than in the underground part(root), and the difference was significant. This study provides basic scientific data for accurate species identification, evaluation of germplasm resources, research on secondary pro-duct accumulation of medicinal plants within Gentianaceae, and protection of endangered alpine species.


Subject(s)
Gentiana , Gene Expression Profiling , Gene Expression Regulation, Plant , Gentiana/genetics , Iridoids , Transcriptome
19.
Zhongguo Zhong Yao Za Zhi ; 46(12): 3016-3023, 2021 Jun.
Article in Chinese | MEDLINE | ID: mdl-34467691

ABSTRACT

The acupoint application of Euodiae Fructus at Yongquan(KI1) can significantly improve the sleep quality of patients with insomnia with berberine as the main effective component for the efficacy. Nineteen active compounds and 203 drug targets were screened out from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). After comparison with GeneCards and Online Mendelian Inheritance in Man(OMIM), 24 common genes of diseases and drugs were obtained. STRING 11.0 was used to construct a protein-protein interaction(PPI) network of the overlapping genes, and Matthews correlation coefficient(MCC) was employed to screen the core genes, which were then subjected to enrichment analysis with gene ontology(GO) and Kyoto encyclopedia of genes and genomes(KEGG). The results revealed that the main compounds of Euodiae Fructus, such as berberine and rutaecarpine, participated in the biological processes(such as neurotransmitter receptor activity) by regulating C-reactive protein(CRP), estrogen receptor 1(ESR1), 5-hydroxytryptamine(5-HT) receptor, and interleukin-6(IL-6) to exert sedative, anxiolytic, and antidepressant effects. Sixty 4-week-old SPF mice were randomly divided into a control group, a model group, a positive drug(diazepam tablets) group, and low-, medium-, and high-dose berberine groups. Medication with corresponding drugs was performed for one week. The results demonstrated that berberine was potent in reducing the activities and standing times of mice, down-regulating the levels of CRP and IL-6 mRNA in the hypothalamus, and up-regulating the expression of 5-HT(P<0.01); however, no significant effect on ESR1 was observed. The network of Euodiae Fructus in treating insomnia was constructed by network pharmacology and verified by tests. The findings indicated that the therapeutic efficacy of Euodiae Fructus in treating insomnia was achieved by participating in multiple biological processes, such as neurotransmitter receptor activity, which provided a scientific basis for its clinical application.


Subject(s)
Drugs, Chinese Herbal , Sleep Initiation and Maintenance Disorders , Animals , Databases, Genetic , Drugs, Chinese Herbal/pharmacology , Gene Ontology , Humans , Medicine, Chinese Traditional , Mice , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep Initiation and Maintenance Disorders/genetics
20.
ISME J ; 15(11): 3303-3314, 2021 11.
Article in English | MEDLINE | ID: mdl-34031546

ABSTRACT

Pseudomonas aeruginosa is a nosocomial pathogen with a prevalence in immunocompromised individuals and is particularly abundant in the lung microbiome of cystic fibrosis patients. A clinically important adaptation for bacterial pathogens during infection is their ability to survive and proliferate under phosphorus-limited growth conditions. Here, we demonstrate that P. aeruginosa adapts to P-limitation by substituting membrane glycerophospholipids with sugar-containing glycolipids through a lipid renovation pathway involving a phospholipase and two glycosyltransferases. Combining bacterial genetics and multi-omics (proteomics, lipidomics and metatranscriptomic analyses), we show that the surrogate glycolipids monoglucosyldiacylglycerol and glucuronic acid-diacylglycerol are synthesised through the action of a new phospholipase (PA3219) and two glycosyltransferases (PA3218 and PA0842). Comparative genomic analyses revealed that this pathway is strictly conserved in all P. aeruginosa strains isolated from a range of clinical and environmental settings and actively expressed in the metatranscriptome of cystic fibrosis patients. Importantly, this phospholipid-to-glycolipid transition comes with significant ecophysiological consequence in terms of antibiotic sensitivity. Mutants defective in glycolipid synthesis survive poorly when challenged with polymyxin B, a last-resort antibiotic for treating multi-drug resistant P. aeruginosa. Thus, we demonstrate an intriguing link between adaptation to environmental stress (nutrient availability) and antibiotic resistance, mediated through membrane lipid renovation that is an important new facet in our understanding of the ecophysiology of this bacterium in the lung microbiome of cystic fibrosis patients.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Anti-Bacterial Agents/pharmacology , Glycolipids , Humans , Phosphorus , Pseudomonas aeruginosa/genetics
SELECTION OF CITATIONS
SEARCH DETAIL