Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38285605

ABSTRACT

This study was conducted to investigate the effects of sodium butyrate (SB) supplementation on growth performance, intestinal barrier functions, and intestinal bacterial communities in sucking lambs. Forty lambs of 7 d old, with an average body weight (BW) of 4.46 ±â€…0.45 kg, were allocated into the control (CON) or SB group, with each group having five replicate pens (n = 5). Lambs were orally administered SB at 1.8 mL/kg BW in the SB group or the same volume of saline in the CON group. Treatments were administered from 7 to 35 d of age, when one lamb from each replicate was slaughtered to obtain intestinal tissues and contents. The results showed that supplementation with SB tended to increase the BW (P = 0.079) and the starter intake (P = 0.089) of lambs at 35 d of age. The average daily gain of lambs in the SB group was significantly greater than that in the CON group (P < 0.05). The villus height of jejunum in the SB group was markedly higher (P < 0.05) than that in the CON group. In ileum, lambs in the SB group had lower (P < 0.05) crypt depth and greater (P < 0.05) villus-to-crypt ratio than those in the CON group. Compared with the CON group, the mRNA and protein expressions of Claudin-1 and Occludin were increased (P < 0.05) in the SB group. Supplementation with SB decreased the relative abundances of pathogenic bacteria, including Clostridia_UCG-014 (P = 0.094) and Romboutsia (P < 0.05), which were negatively associated with the intestinal barrier function genes (P < 0.05). The relative abundance of Succiniclasticum (P < 0.05) was higher in the SB group, and it was positively correlated with the ratio of villi height to crypt depth in the jejunum (P < 0.05). Compared with the CON group, the function "Metabolism of Cofactors and Vitamins" was increased in the SB group lambs (P < 0.05). In conclusion, SB orally administration during suckling period could improve the small intestine development and growth performance of lambs by inhibiting the harmful bacteria (Clostridia_UCG-014, Romboutsia) colonization, and enhancing intestinal barrier functions.


It is well known that butyrate and its derivatives have various benefits for the rumen development of ruminants, whereas its effects on the small intestine in preweaned lambs have received little attention. Therefore, the present study investigated the effects of sodium butyrate (SB) supplementation on growth performance, intestinal barrier functions, and intestinal bacterial communities in sucking lambs. The results indicated that SB dietary treatment has beneficial effects on the small intestine development and growth performance of suckling lambs.


Subject(s)
Intestine, Small , Intestines , Animals , Sheep , Butyric Acid/pharmacology , Intestinal Mucosa/metabolism , Sheep, Domestic , Body Weight , Animal Feed/analysis , Dietary Supplements , Diet/veterinary
2.
Anim Nutr ; 15: 320-331, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38053803

ABSTRACT

This study was conducted to evaluate the effects of dietary crude protein (CP) and rumen-protected lysine (RPL) supplementation on lactation performance, amino acid (AA) balance, nitrogen (N) utilization and hindgut microbiota in dairy cows. Treatments were in a 2 × 2 factorial arrangement, and the main effects were CP concentration (16% vs. 18%) and RPL supplementation (with or without RPL at 40 g/cow per day). Forty cows were randomly allocated to 4 groups: low-CP diet (LP), low-CP diet plus RPL (LPL), high-CP diet (HP), high-CP diet plus RPL (HPL). The experiment was conducted for 8 weeks. Results showed that RPL increased the dry matter intake (P < 0.01), milk protein yield (P = 0.04) and energy corrected milk (P = 0.04), and tended to increase milk fat yield (P = 0.06) and fat corrected milk (P = 0.05). Cows in the HP group tended to have higher milk urea N (P = 0.07). Plasma concentrations of Arg, Ile, Lys, Met, Pro, total essential AA and total nonessential AA were increased by RPL (P < 0.05). The total essential AA, total nonessential AA and most AA (except Ile, Phe, Gly and Pro) were increased in the HP group (P < 0.05). N excretion was increased in the HP group through an increase in urea N excretion (P < 0.01) and an upward trend in plasma urea N (P = 0.07). In addition, RPL tended to increase milk protein N secretion (P = 0.08), milk N (P = 0.07) and microbial protein synthesis (P = 0.06), and decreased plasma urea N (P < 0.001). In the hindgut, the bacterial community were different between the LP and LPL groups (P < 0.01). The probiotic abundances of Christensenellaceae_R-7_group and Acinetobacter were increased by RPL (P = 0.03 and 0.03, respectively). The pathogenic abundances of Clostridium_sensu_stricto_1 (P < 0.001) and Turicibacter (P < 0.01) were decreased by RPL. In conclusion, supplementing RPL with low dietary CP could balance AA supply and increase milk protein yield, resulting in an improvement in N utilization efficiency, and altered the composition of the hindgut microbiota to favor the lactation performance of dairy cows.

3.
Anim Sci J ; 94(1): e13857, 2023.
Article in English | MEDLINE | ID: mdl-37496108

ABSTRACT

Fatty liver syndrome, a common health problem in dairy cows, occurs during the transition from pregnancy to lactation. If the energy supplied to the cow's body cannot meet its needs, a negative energy balance ensues, and the direct response is fat mobilization. Nicotinamide (NAM) has been reported to reduce the nonesterified fatty acid concentration of postpartum plasma. To study the biochemical adaptations underlying this physiologic dysregulation, 12 dairy cows were sequentially assigned to a NAM (45 g/day) treatment or control group. Blood samples were collected on day (D) 1 and D21 relative to parturition. Changes to the plasma lipid metabolism of dairy cows in the two groups were compared using lipidomics. There were significant increases in plasma sphingomyelins d18:1/18:0, d18:1/23:0, d18:1/24:1, d18:1/24:0, and d18:0/24:0 in the NAM group on D1 relative to parturition. In addition, fatty acids 18:2, 18:1, 18:0, 16:1, and 16:0 were obviously decreased on D21 relative to calving. This research has provided insights into how NAM supplementation improves lipid metabolism in perinatal dairy cows.


Subject(s)
Diet , Milk , Pregnancy , Female , Cattle , Animals , Diet/veterinary , Milk/metabolism , Niacinamide/pharmacology , Niacinamide/metabolism , Lipidomics , Postpartum Period/metabolism , Lactation/physiology , Fatty Acids, Nonesterified , Dietary Supplements , Energy Metabolism/physiology
4.
J Dairy Sci ; 105(12): 10007-10019, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36241438

ABSTRACT

Amino acids are primarily absorbed in the ruminant small intestine, and the small intestine is a target organ prone to oxidative stress, causing intestinal disfunction. Previous study suggested that l-Trp could benefit intestinal function and production performance. This study aimed to explore the effects of l-Trp on hydrogen peroxide (H2O2)-induced oxidative injury in bovine intestinal epithelial cells (BIEC) and the potential mechanism. The effects of l-Trp on cell apoptosis, antioxidative capacity, AA transporters, and the mammalian target of rapamycin (mTOR) signaling pathway were evaluated in BIEC treated with 0.8 mMl-Trp for 2 hours combined with or without H2O2 induction. In addition, to explore whether the effects of 0.8 mMl-Trp on oxidative stress were related to mTOR, an mTOR-specific inhibitor was used. The percentage of apoptosis was measured using flow cytometry. The relative gene abundance and protein expression in BIEC were determined using real-time PCR and Western blot assay, respectively. Results showed l-Trp at 0.4 and 0.8 mM enhanced the cell viability, and it was inhibited by l-Trp at 6.4 mM. l-Tryptophan at 0.4, 0.8, and 1.6 mM remarkably decreased the percentage of apoptosis and enhanced antioxidative capacity in H2O2-mediated BIEC. Moreover, l-Trp at 0.8 mM increased the relative gene abundance and protein expression of antioxidative enzymes and AA transporters, and the mTOR signaling pathway. The mTOR inhibitor lowered the protein expression of large neutral amino acid transporter 1, but the inhibition of mTOR did not alter the activities of catalase and superoxide dismutase or protein expression of alanine-serine-cysteine transporter 2 with or without H2O2 induction. l-Tryptophan increased catalase and superoxide dismutase activities in H2O2-mediated BIEC, although not with a present mTOR inhibitor. l-Tryptophan increased the protein expression of large neutral amino acid transporter 1 and alanine-serine-cysteine transporter 2 in H2O2-mediated BIEC with or without the presence of an mTOR inhibitor. The present work suggested that l-Trp supplementation could alleviate oxidative injury in BIEC by promoting antioxidative capacity and inhibiting apoptosis, and the mTOR signal played vital roles in the alleviation.


Subject(s)
Hydrogen Peroxide , Tryptophan , Cattle , Animals , Hydrogen Peroxide/pharmacology , Tryptophan/pharmacology , Tryptophan/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Catalase/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism , Cysteine/pharmacology , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Apoptosis , Epithelial Cells/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Serine , Alanine/metabolism , Mammals/metabolism
5.
J Agric Food Chem ; 66(22): 5723-5732, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29758980

ABSTRACT

The objective of this study was to evaluate alterations in serum metabolites of transition dairy cows affected by biotin (BIO) and nicotinamide (NAM) supplementation. A total of 40 multiparous Holsteins were paired and assigned randomly within a block to one of the following four treatments: control (T0), 30 mg/day BIO (TB), 45 g/day NAM (TN), and 30 mg/day BIO + 45 g/day NAM (TB+N). Supplemental BIO and NAM were drenched on cows from 14 days before the expected calving date. Gas chromatography time-of-flight/mass spectrometry was used to analyze serum samples collected from eight cows in every groups at 14 days after calving. In comparison to T0, TB, TN, and TB+N had higher serum glucose concentrations, while non-esterified fatty acid in TN and TB+N and triglyceride in TB+N were lower. Adenosine 5'-triphosphate was significantly increased in TB+N. Both TN and TB+N had higher glutathione and lower reactive oxygen species. Moreover, TB significantly increased inosine and guanosine concentrations, decreased ß-alanine, etc. Certain fatty acid concentrations (including linoleic acid, oleic acid, etc.) were significantly decreased in both TN and TB+N. Some amino acid derivatives (spermidine in TN, putrescine and 4-hydroxyphenylethanol in TB+N, and guanidinosuccinic acid in both TN and TB+N) were affected. Correlation network analysis revealed that the metabolites altered by NAM supplementation were more complicated than those by BIO supplementation. These findings showed that both BIO and NAM supplementation enhanced amino acid metabolism and NAM supplementation altered biosynthesis of unsaturated fatty acid metabolism. The improved oxidative status and glutathione metabolism further indicated the effect of NAM on oxidative stress alleviation.


Subject(s)
Biotin/blood , Cattle/blood , Dietary Supplements/analysis , Niacinamide/blood , Amino Acids/blood , Animals , Biotin/administration & dosage , Fatty Acids, Unsaturated/blood , Female , Gas Chromatography-Mass Spectrometry , Glutathione/blood , Metabolomics , Niacinamide/administration & dosage , Serum/chemistry
6.
Article in English | MEDLINE | ID: mdl-27471592

ABSTRACT

BACKGROUND: Calcium is a vital mineral and an indispensable component of milk for ruminants. The regulation of transcellular calcium transport by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3, the active form of vitamin D) has been confirmed in humans and rodents, and regulators, including vitamin D receptor (VDR), calcium binding protein D9k (calbindin-D9k), plasma membrane Ca(2+)-ATPase 1b (PMCA1b), PMAC2b and Orai1, are involved in this process. However, it is still unclear whether 1,25-(OH)2D3 could stimulate calcium transport in the ruminant mammary gland. The present trials were conducted to study the effect of 1,25-(OH)2D3 supplementation and energy availability on the expression of genes and proteins related to calcium secretion in goat mammary epithelial cells. METHODS: An in vitro culture method for goat secreting mammary epithelial cells was successfully established. The cells were treated with different doses of 1,25-(OH)2D3 (0, 0.1, 1.0, 10.0 and 100.0 nmol/L) for calcium transport research, followed by a 3-bromopyruvate (3-BrPA, an inhibitor of glucose metabolism) treatment to determine its dependence on glucose availability. Cell proliferation ratios, glucose consumption and enzyme activities were measured with commercial kits, and real-time quantitative polymerase chain reaction (RT-qPCR), and western blots were used to determine the expression of genes and proteins associated with mammary calcium transport in dairy goats, respectively. RESULTS: 1,25-(OH)2D3 promoted cell proliferation and the expression of genes involved in calcium transport in a dose-dependent manner when the concentration did not exceed 10.0 nmol/L. In addition, 100.0 nmol/L 1,25-(OH)2D3 inhibited cell proliferation and the expression of associated genes compared with the 10.0 nmol/L treatment. The inhibition of hexokinase 2 (HK2), a rate-limiting enzyme in glucose metabolism, decreased the expression of PMCA1b and PMCA2b at the mRNA and protein levels as well as the transcription of Orai1, indicating that glucose availability was required for goat mammary calcium transport. The optimal concentration of 1,25-(OH)2D3 that facilitated calcium transport in this study was 10.0 nmol/L. CONCLUSIONS: Supplementation with 1,25-(OH)2D3 influenced cell proliferation and regulated the expression of calcium transport modulators in a dose- and energy-dependent manner, thereby highlighting the role of 1,25-(OH)2D3 as an efficacious regulatory agent that produces calcium-enriched milk in ruminants when a suitable energy status was guaranteed.

SELECTION OF CITATIONS
SEARCH DETAIL