Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37446294

ABSTRACT

Phosphorus is an essential macronutrient for plant growth and development, but phosphate resources are limited and rapidly depleting due to massive global agricultural demand. This study identified two genes in the phosphate transporter 2 (PHT2) family of soybean by bioinformatics. The expression patterns of two genes by qRT-PCR at leaves and all were induced by low-phosphate stress. After low-phosphate stress, GmPHT2;2 expression was significantly higher than GmPHT2;1, and the same trend was observed throughout the reproductive period. The result of heterologous expression of GmPHT2 in Arabidopsis knockout mutants of atpht2;1 shows that chloroplasts and whole-plant phosphorus content were significantly higher in plants complementation of GmPHT2;2 than in plants complementation of GmPHT2;1. This suggests that GmPHT2;2 may play a more important role in plant phosphorus metabolic homeostasis during low-phosphate stress than GmPHT2;1. In the yeast backfill assay, both genes were able to backfill the ability of the defective yeast to utilize phosphorus. GmPHT2 expression was up-regulated by a low-temperature treatment at 4 °C, implying that GmPHT2;1 may play a role in soybean response to low-temperature stress, in addition to being involved in phosphorus transport processes. GmPHT2;1 and GmPHT2;2 exhibit a cyclic pattern of circadian variation in response to light, with the same pattern of gene expression changes under red, blue, and white light conditions. GmPHT2 protein was found in the chloroplast, according to subcellular localization analysis. We conclude that GmPHT2 is a typical phosphate transporter gene that can improve plant acquisition efficiency.


Subject(s)
Arabidopsis , Phosphate Transport Proteins , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Glycine max/metabolism , Saccharomyces cerevisiae/metabolism , Phosphates/metabolism , Phosphorus/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Plant Roots/metabolism , Plant Proteins/metabolism
2.
Funct Plant Biol ; 50(8): 649-662, 2023 08.
Article in English | MEDLINE | ID: mdl-37308083

ABSTRACT

In view of the importance of inorganic phosphate to plant growth and development, the role of phosphate transporters responsible for absorption and transportation in crops has attracted increasing attention. In this study, bioinformatics analysis and subcellular localisation experiment showed that GmPHT4;10 is a member of PHT4 subfamily of phosphate transporters and located in chloroplasts. The gene was induced by phosphate deficiency and drought, and was the highest in leaves. After GmPHT4;10 gene was replenished to AtPHT4;5 gene deletion mutant lines (atpht4;5 ), the phenotype of the transgenic lines was basically recovered to the level of wild-type, but there were significant differences in phosphate content and photosynthetic indicators between wild-type and revertant lines. Meanwhile, the difference of proline content and catalase activity between the two lines also indicated that GmPHT4;10 gene and its orthologous gene AtPHT4;5 were different in drought resistance and drought resistance mechanism. After overexpression of GmPHT4;10 gene in Arabidopsis thaliana , more phosphate and proline were accumulated in chloroplasts and catalase activity was increased, thus improving photosynthesis and drought resistance of plants. The results further supplement the cognition of PHT4 subfamily function, and provides new ideas and ways to improve photosynthesis by revealing the function of chloroplast phosphate transporter.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Drought Resistance , Catalase/metabolism , Photosynthesis/genetics , Chloroplasts/metabolism , Arabidopsis/genetics , Plants/metabolism , Phosphates/metabolism
3.
Sci Rep ; 12(1): 20883, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463363

ABSTRACT

The family of phosphate transporters (PHTs) mediates the uptake and translocation of Pi inside the plants. However, little is known about transporters in soybean. Therefore, Searched the Genome Database for Soybean, 57 GmPHTs family members were identified in soybean, Phylogenetic analysis suggested that members of the PHTs gene family can be divided into six clades. Collinearity analysis revealed that most of the GmPHT genes shared syntenic relationships with PHTs members in Arabidopsis thaliana and that large segment duplication played a major driving force for GmPHTs evolution in addition to tandem duplication. Further analysis of the promoter revealed that light-responsive elements and abiotic stress-responsive elements were widely distributed within the promoter regions of GmPHT genes. Based on RNA-seq data, GmPHTs showed different expression patterns in roots and leaves of soybean treated with long-term low phosphorus and short-term low phosphorus, in addition, the expression levels of GmPHT genes can be regulated by drought stresses, it was implied that the induced expression of GmPHTs could promote phosphorus uptake and transport in soybean and thus adapt to low phosphorus and drought stress, which is the first step dissection of Pi transport system and probably refers to new roles of PHTs genes in soybean.


Subject(s)
Arabidopsis , Fabaceae , Glycine max/genetics , Phosphate Transport Proteins/genetics , Phylogeny , Phosphorus
4.
J Sci Food Agric ; 102(14): 6632-6642, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35603546

ABSTRACT

BACKGROUND: Sugarcane provides many secondary metabolites for the pharmacological and cosmetic industries. Secondary metabolites, such as phenolic compounds, flavonoids, and anthocyanins, have been studied, but few reports focus on the identification of alkaloid and non-alkaloid phytocompounds in sugarcane. RESULTS: In this study, we identified 40 compounds in total from the rinds of cultivated sugarcane varieties (including eight alkaloids, 24 non-alkaloids, and eight others) by using the liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach. Among these compounds, 31 were novel and are reported for the first time in sugarcane. Some alkaloids such as 3-indoleacrylic acid, N,N-dimethyl-5-methoxytryptamine, tryptamine, 6-hydroxynicotinic acid, and 6-deoxyfagomine are identified the first time in sugarcane rind. Four alkaloids such as trigonelline, piperidine, 3-indoleacrylic acid, and 6-deoxyfagomine are found abundantly in sugarcane rind and these compounds have promising pharmaceutical value. Some phytocompounds such as choline and acetylcholine (non-alkaloid compounds) were most common in the rind of ROC22 and Yuetang93/159 (YT93/159). Hierarchical cluster analysis and principal component analysis revealed that the ROC22, Taitang172 (F172), and Yuetang71/210 (YT71/210) varieties were quite similar in alkaloid composition when compared with other sugarcane varieties. We have also characterized the biosynthesis pathway of sugarcane alkaloids. The rind of F172, ROC22, and YT71/210 showed the highest total alkaloid content, whereas the rind of ROC16 revealed a minimum level. Interestingly, the rind extract from YT71/210 and F172 showed maximum antioxidant activity, followed by ROC22. CONCLUSION: Our results showed the diversity of alkaloid and non-alkaloid compounds in the rind of six cultivated sugarcanes and highlighted the promising phytocompounds that can be extracted, isolated, and utilized by the pharmacological industry. © 2022 Society of Chemical Industry.


Subject(s)
Saccharum , Acetylcholine , Anthocyanins , Antioxidants/chemistry , Choline , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Flavonoids , Metabolomics/methods , Methoxydimethyltryptamines , Piperidines , Plant Extracts/chemistry , Plant Extracts/pharmacology , Saccharum/chemistry , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL