Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Front Immunol ; 13: 972499, 2022.
Article in English | MEDLINE | ID: mdl-36081520

ABSTRACT

Porcine Deltacoronavirus (PDCoV), an enveloped positive-strand RNA virus that causes respiratory and gastrointestinal diseases, is widely spread worldwide, but there is no effective drug or vaccine against it. This study investigated the optimal Selenium Nano-Particles (SeNPs) addition concentration (2 - 10 µg/mL) and the mechanism of PDCoV effect on ST (Swine Testis) cell apoptosis, the antagonistic effect of SeNPs on PDCoV. The results indicated that 4 µg/mL SeNPs significantly decreased PDCoV replication on ST cells. SeNPs relieved PDCoV-induced mitochondrial division and antagonized PDCoV-induced apoptosis via decreasing Cyt C release and Caspase 9 and Caspase 3 activation. The above results provided an idea and experimental basis associated with anti-PDCoV drug development and clinical use.


Subject(s)
Coronavirus Infections , Coronavirus , Selenium , Swine Diseases , Animals , Apoptosis , Coronavirus/physiology , Male , Mitochondrial Dynamics , Swine
2.
Viruses ; 13(11)2021 10 26.
Article in English | MEDLINE | ID: mdl-34834964

ABSTRACT

A transmissible gastroenteritis virus (TGEV) is a porcine enteropathogenic coronavirus, causing acute swine enteric disease especially in suckling piglets. Mesoporous silica nanoparticles (MSNs) are safe vaccine adjuvant, which could enhance immune responses. Our previous research confirmed that nano silicon had immune-enhancing effects with inactivated TGEV vaccine. In this study, we further clarified the immune-enhancing mechanism of the inactivated TGEV vaccine with MSNs on porcine dendritic cells (DCs). Our results indicated that the inactivated TGEV vaccine with MSNs strongly enhanced the activation of the DCs. Expressions of TLR3, TLR5, TLR7, TLR9, and TLR10, cytokines IFN-α, IL-1ß, IL-6, IL-12, and TNF-α, cytokine receptor CCR-7 of immature DCs were characterized and showed themselves to be significantly higher in the inactivated TGEV vaccine with the MSN group. In summary, the inactivated TGEV vaccine with MSNs has effects on the phenotype and function of porcine DCs, which helps to better understand the immune-enhancing mechanism.


Subject(s)
Cytokines/metabolism , Dendritic Cells/immunology , Gastroenteritis, Transmissible, of Swine/immunology , Gastroenteritis, Transmissible, of Swine/prevention & control , Toll-Like Receptors/metabolism , Transmissible gastroenteritis virus/immunology , Vaccines, Inactivated/immunology , Adjuvants, Vaccine/therapeutic use , Animals , Cytokines/immunology , Dendritic Cells/cytology , Female , Immunity, Innate , Nanoparticles/therapeutic use , Phenotype , Silicon/therapeutic use , Swine , Toll-Like Receptors/immunology , Vaccines, Inactivated/therapeutic use
3.
Nanomedicine ; 14(4): 1201-1212, 2018 06.
Article in English | MEDLINE | ID: mdl-29501635

ABSTRACT

Inactivated transmissible gastroenteritis virus (TGEV) vaccines are widely used in swine herds in China. These are limited, however, by the need to elicit both humoral and cellular immunity, as well as the efficiency of adjuvants. In this study, a 70-nm nano silicon particle was applied with inactivated TGEV vaccine in mice, and its immune-enhancing effects and mechanism of action investigated. We found that nano silicon applied with inactivated TGEV vaccine induced high antibody titers, increase IL-6, TNF-α and IFN-γ expression, and stimulate CD3+ T cell proliferation with a high CD4+/CD8+ T lymphocyte ratio. Nano silicon could quickly activate innate and adaptive immunity by stimulating Toll-like receptor signaling pathways, indicating that the nano silicon adjuvant enhanced long-term humoral and early cellular immune responses when combined with inactivated TGEV vaccine. Nano silicon could be considered for use as an antigen- carrier and adjuvant for veterinary vaccines.


Subject(s)
Immunity, Cellular/immunology , Immunity, Humoral/immunology , Silicon/chemistry , Transmissible gastroenteritis virus/immunology , Vaccines, DNA/immunology , Vaccines, DNA/therapeutic use , Adjuvants, Immunologic , Animals , Cell Line , Enzyme-Linked Immunosorbent Assay , Gastroenteritis/immunology , Gastroenteritis/prevention & control , Interferon-gamma/metabolism , Interleukin-6/metabolism , Male , Mice, Inbred BALB C , Swine , Tumor Necrosis Factor-alpha/metabolism
4.
Antivir Ther ; 16(3): 357-63, 2011.
Article in English | MEDLINE | ID: mdl-21555818

ABSTRACT

BACKGROUND: Indigowoad root polysaccharide (IRPS) is a natural polysaccharide isolated from the traditional Chinese medicinal herb Radix Isatidis, and has many kinds of biological activities. However, the IRPS antiviral activity, especially the anti-porcine reproductive and respiratory syndrome virus (PRRSV) effect, has not been evaluated. METHODS: PRRSV was propagated in the MARC-145 cell line, and viral titre was determined by cytopathic effect and expressed as the 50% tissue culture infection dose (TCID(50)) in the current study. The cell cytotoxic effect of IRPS toward MARC-145 was evaluated by MTT assay firstly, then the inhibitory effects of IRPS on PRRSV replication in vitro were investigated by determining the effect of IRPS upon a single replicative cycle of PRRSV in MARC-145 cells. The effects of IRPS on viral RNA and protein synthesis in PRRSV-infected cells were investigated using real-time PCR and double-antibody (sandwich) ELISA. RESULTS: IRPS was able to effectively suppress the infectivity of the PRRSV in a dose-dependent manner, especially by adding IRPS during the PRRSV infection. IRPS could affect the attachment of PRRSV to MARC-145 cells, and also inhibit the viral RNA and protein synthesis. CONCLUSIONS: IRPS has an antiviral effect on PRRSV replication in MARC-145 cells and might be useful in medical development for antiviral research. However, the precise mechanism of the host and viral targets of IRPS are unknown, so further studies should be conducted to investigate the precise mechanism of IRPS inhibitory effect on PRRSV infection.


Subject(s)
Antiviral Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Isatis/chemistry , Polysaccharides/pharmacology , Porcine respiratory and reproductive syndrome virus/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/toxicity , Cell Line , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/toxicity , Kidney/cytology , Kidney/drug effects , Kidney/virology , Medicine, Chinese Traditional , Plant Roots/chemistry , Plants, Medicinal/chemistry , Polysaccharides/chemistry , Polysaccharides/toxicity , Porcine respiratory and reproductive syndrome virus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL