Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Complementary Medicines
Database
Type of study
Language
Affiliation country
Publication year range
1.
Phytopathology ; 112(10): 2099-2109, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35536116

ABSTRACT

Potato production worldwide is plagued by several disease-causing pathogens that result in crop and economic losses estimated to billions of dollars each year. To this day, synthetic chemical applications remain the most widespread control strategy despite their negative effects on human and environmental health. Therefore, obtainment of superior biocontrol agents or their naturally produced metabolites to replace fungicides or to be integrated into practical pest management strategies has become one of the main targets in modern agriculture. Our main focus in the present study was to elucidate the antagonistic potential of a new strain identified as Bacillus subtilis EG21 against potato pathogens Phytophthora infestans and Rhizoctonia solani using several in vitro screening assays. Microscopic examination of the interaction between EG21 and R. solani showed extended damage in fungal mycelium, while EG21 metabolites displayed strong anti-oomycete and zoosporecidal effect on P. infestans. Mass spectrometry (MS) analysis revealed that EG21 produced antifungal and anti-oomycete cyclic lipopeptides surfactins (C12 to C19). Further characterization of EG21 confirmed its ability to produce siderophores and the extracellular lytic enzymes cellulase, pectinase and chitinase. The antifungal activity of EG21 cell-free culture filtrate (CF) was found to be stable at high-temperature/pressure treatment and extreme pH values and was not affected by proteinase K treatment. Disease-inhibiting effect of EG21 CF against P. infestans and R. solani infection was confirmed using potato leaves and tubers, respectively. Biotechnological applications of using microbial agents and their bioproducts for crop protection hold great promise to develop into effective, environment-friendly and sustainable biocontrol strategies. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Cellulases , Chitinases , Fungicides, Industrial , Phytophthora infestans , Solanum tuberosum , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Bacillus subtilis/chemistry , Bacillus subtilis/metabolism , Cellulases/metabolism , Cellulases/pharmacology , Chitinases/metabolism , Endopeptidase K/metabolism , Endopeptidase K/pharmacology , Fungicides, Industrial/metabolism , Fungicides, Industrial/pharmacology , Humans , Lipopeptides/chemistry , Lipopeptides/metabolism , Lipopeptides/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Polygalacturonase/metabolism , Rhizoctonia , Siderophores/metabolism , Siderophores/pharmacology , Solanum tuberosum/microbiology
2.
Phytopathology ; 109(9): 1555-1565, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31041882

ABSTRACT

Late blight caused by the oomycete Phytophthora infestans constitutes the greatest threat to potato production worldwide. Considering the increasing concerns regarding the emergence of novel fungicide-resistant genotypes and the general demand for reducing inputs of synthetic and copper-based fungicides, the need for alternative control methods is acute. Several bacterial antagonists have shown anti-Phytophthora effects during in vitro and greenhouse experiments. We report the effects of three Pseudomonas strains recovered from field-grown potatoes against a collection of P. infestans isolates assembled for this study. The collection comprised 19 P. infestans isolates of mating types A1 and A2 greatly varying in fungicide resistance and virulence profiles as deduced from leaf disc experiments on Black's differential set. The mycelial growth of all P. infestans isolates was fully inhibited when co-cultivated with the most active Pseudomonas strain (R47). Moreover, the isolates reacted differently to exposure to the less active Pseudomonas strains (S19 and R76). Leaf disc infection experiments with six selected P. infestans isolates showed that four of them, including highly virulent and fungicide-resistant ones, could be efficiently controlled by different potato-associated Pseudomonas strains.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Phytophthora infestans , Solanum tuberosum , Genotype , Plant Diseases/microbiology , Pseudomonas , Solanum tuberosum/microbiology
3.
Sci Rep ; 9(1): 18778, 2019 12 30.
Article in English | MEDLINE | ID: mdl-31889050

ABSTRACT

Plant diseases are a major cause for yield losses and new strategies to control them without harming the environment are urgently needed. Plant-associated bacteria contribute to their host's health in diverse ways, among which the emission of disease-inhibiting volatile organic compounds (VOCs). We have previously reported that VOCs emitted by potato-associated bacteria caused strong in vitro growth inhibition of the late blight causing agent Phytophthora infestans. This work focuses on sulfur-containing VOCs (sVOCs) and demonstrates the high in planta protective potential of S-methyl methane thiosulfonate (MMTS), which fully prevented late blight disease in potato leaves and plantlets without phytotoxic effects, in contrast to other sVOCs. Short exposure times were sufficient to protect plants against infection. We further showed that MMTS's protective activity was not mediated by the plant immune system but lied in its anti-oomycete activity. Using quantitative proteomics, we determined that different sVOCs caused specific proteome changes in P. infestans, indicating perturbations in sulfur metabolism, protein translation and redox balance. This work brings new perspectives for plant protection against the devastating Irish Famine pathogen, while opening new research avenues on the role of sVOCs in the interaction between plants and their microbiome.


Subject(s)
Phytophthora infestans/growth & development , Plant Diseases/microbiology , Solanum tuberosum/microbiology , Sulfur/metabolism , Volatile Organic Compounds/metabolism , Plant Diseases/parasitology , Plant Leaves/metabolism , Plant Proteins/metabolism , Solanum tuberosum/metabolism , Solanum tuberosum/parasitology
4.
Front Microbiol ; 9: 2573, 2018.
Article in English | MEDLINE | ID: mdl-30420845

ABSTRACT

Late blight caused by Phytophthora infestans is considered as the most devastating disease of potato and is a re-emerging problem worldwide. Current late blight control practices rely mostly on synthetic fungicides or copper-based products, but growing awareness of the negative impact of these compounds on the environment has led to the search for alternative control measures. A collection of Pseudomonas strains isolated from both the rhizosphere and the phyllosphere of potato was recently characterized for in vitro protective effects against P. infestans. In the present study, we used a leaf disk assay with three different potato cultivars to compare the disease inhibition capacity of nine selected Pseudomonas strains when applied alone or in all possible dual and triple combinations. Results showed a strong cultivar effect and identified strains previously thought to be inactive based on in vitro assays as the best biocontrol candidates. One strain was much more active alone than in combination with other strains, while two other strains provided significantly better protection in dual combination than when applied alone. A subset of five strains was then further selected to determine their mutual influence on each other's survival and growth, as well as to characterize their activity against P. infestans in more details. This revealed that the two strains whose dual combination was particularly efficient were only weakly interfering with each other's growth and had complementary modes of action. Our results highlight the potential to harness the crop's native rhizosphere and phyllosphere microbiome through re-assembling strains with differing modes of action into small communities, thereby providing more consistent protection than with the application of single strains. We consider this as a first step toward more elaborate microbiome management efforts, which shall be integrated into global strategies for sustainable control of potato late blight.

5.
Appl Environ Microbiol ; 81(3): 821-30, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25398872

ABSTRACT

Bacteria emit volatile organic compounds with a wide range of effects on bacteria, fungi, plants, and animals. The antifungal potential of bacterial volatiles has been investigated with a broad span of phytopathogenic organisms, yet the reaction of oomycetes to these volatile signals is largely unknown. For instance, the response of the late blight-causing agent and most devastating oomycete pathogen worldwide, Phytophthora infestans, to bacterial volatiles has not been assessed so far. In this work, we analyzed this response and compared it to that of selected fungal and bacterial potato pathogens, using newly isolated, potato-associated bacterial strains as volatile emitters. P. infestans was highly susceptible to bacterial volatiles, while fungal and bacterial pathogens were less sensitive. Cyanogenic Pseudomonas strains were the most active, leading to complete growth inhibition, yet noncyanogenic ones also produced antioomycete volatiles. Headspace analysis of the emitted volatiles revealed 1-undecene as a compound produced by strains inducing volatile-mediated P. infestans growth inhibition. Supplying pure 1-undecene to P. infestans significantly reduced mycelial growth, sporangium formation, germination, and zoospore release in a dose-dependent manner. This work demonstrates the high sensitivity of P. infestans to bacterial volatiles and opens new perspectives for sustainable control of this devastating pathogen.


Subject(s)
Antifungal Agents/metabolism , Phytophthora infestans/drug effects , Phytophthora infestans/growth & development , Pseudomonas/metabolism , Solanum tuberosum/microbiology , Volatile Organic Compounds/metabolism , Molecular Sequence Data , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL