Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34299235

ABSTRACT

The allergenic and inflammatory potential of proteins can be enhanced by chemical modification upon exposure to atmospheric or physiological oxidants. The molecular mechanisms and kinetics of such modifications, however, have not yet been fully resolved. We investigated the oligomerization and nitration of the grass pollen allergen Phl p 5 by ozone (O3), nitrogen dioxide (NO2), and peroxynitrite (ONOO-). Within several hours of exposure to atmospherically relevant concentration levels of O3 and NO2, up to 50% of Phl p 5 were converted into protein oligomers, likely by formation of dityrosine cross-links. Assuming that tyrosine residues are the preferential site of nitration, up to 10% of the 12 tyrosine residues per protein monomer were nitrated. For the reaction with peroxynitrite, the largest oligomer mass fractions (up to 50%) were found for equimolar concentrations of peroxynitrite over tyrosine residues. With excess peroxynitrite, the nitration degrees increased up to 40% whereas the oligomer mass fractions decreased to 20%. Our results suggest that protein oligomerization and nitration are competing processes, which is consistent with a two-step mechanism involving a reactive oxygen intermediate (ROI), as observed for other proteins. The modified proteins can promote pro-inflammatory cellular signaling that may contribute to chronic inflammation and allergies in response to air pollution.


Subject(s)
Phleum/metabolism , Plant Proteins/metabolism , Rhinitis, Allergic, Seasonal/metabolism , Allergens/chemistry , Kinetics , Nitrates/metabolism , Nitrogen Dioxide/chemistry , Nitrogen Oxides , Oxidants , Ozone/chemistry , Peroxynitrous Acid/chemistry , Plant Proteins/analysis , Poaceae/metabolism , Pollen/metabolism , Proteins/chemistry , Rhinitis, Allergic, Seasonal/physiopathology
2.
Int J Mol Sci ; 19(8)2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30072660

ABSTRACT

Hepcidin-25 was identified as the main iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II)-binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandem mass spectrometry (MS/MS), high-resolution mass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D) model of hepcidin-25 with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or reference material comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others.


Subject(s)
Copper/chemistry , Hepcidins/chemistry , Amino Acid Sequence , Binding Sites , Chromatography, Liquid , Humans , Isomerism , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Tandem Mass Spectrometry
3.
Analyst ; 128(7): 824-31, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12894817

ABSTRACT

Two enzyme immunoassays have been developed, characterised, and applied to investigate protein nitration in birch pollen extract (BPE) and bovine serum albumin (BSA) samples exposed to air pollutants. The monoclonal antibody CAY-189542 against nitrotyrosine (raised against peroxynitrite-treated keyhole limpet hemocyanine) was characterised in an indirect competitive assay (affinity and cross-reactivities) and applied in a new one-sided enzyme immunoassay for nitrated proteins. The one-sided assay was calibrated against a nitrated BSA standard with an average of 14 nitrotyrosine residues per molecule (nitro-(14)-BSA; detection limit 8.3 pmol L(-1)), and the sensitivity of the test was found to be significantly enhanced by a multivalent binding mode of the monoclonal antibody (bonus effect of multivalency). The same antibody and a polyclonal antibody against Bet v 1, the most prominent birch pollen allergen, were used in a new sandwich immunoassay for specific determination of nitrated Bet v 1. This assay was calibrated against a nitrated Bet v 1 standard with an average of 3 nitrotyrosine residues per molecule (nitro-(3)-Bet v 1; detection limit 0.2 nmol L(-1)). Bet v 1 and BSA exposed to polluted urban outdoor air and to synthetic gas mixtures containing NO2 and O3 at atmospherically relevant concentration levels were found to be efficiently nitrated within hours to days. Pronounced correlations of nitro-(14)-BSA equivalent concentrations with exposure time and with nitro-(3)-Bet v 1 equivalent concentrations in nitrated BPE samples were observed. Test experiments indicated that the efficiency of protein nitration was strongly enhanced by reactive species formed upon interaction of NO2 with O3 and H2O (e.g. NO3 and HNO3). Potential implications of protein nitration by air pollutants are outlined and discussed.


Subject(s)
Air Pollutants/chemistry , Allergens/chemistry , Proteins/chemistry , Tyrosine/analogs & derivatives , Tyrosine/analysis , Animals , Antigens, Plant , Immunoenzyme Techniques/methods , Plant Proteins/chemistry , Pollen/immunology , Serum Albumin, Bovine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL