Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Plant Cell Environ ; 45(4): 1315-1332, 2022 04.
Article in English | MEDLINE | ID: mdl-35064681

ABSTRACT

The dynamic behaviour of seeds in soil seed banks depends on their ability to act as sophisticated environmental sensors to adjust their sensitivity thresholds for germination by dormancy mechanisms. Here we show that prolonged incubation of sugar beet fruits at low temperature (chilling at 5°C, generally known to release seed dormancy of many species) can induce secondary nondeep physiological dormancy of an apparently nondormant crop species. The physiological and biophysical mechanisms underpinning this cold-induced secondary dormancy include the chilling-induced accumulation of abscisic acid in the seeds, a reduction in the embryo growth potential and a block in weakening of the endosperm covering the embryonic root. Transcriptome analysis revealed distinct gene expression patterns in the different temperature regimes and upon secondary dormancy induction and maintenance. The chilling caused reduced expression of cell wall remodelling protein genes required for embryo cell elongation growth and endosperm weakening, as well as increased expression of seed maturation genes, such as for late embryogenesis abundant proteins. A model integrating the hormonal signalling and master regulator expression with the temperature-control of seed dormancy and maturation programmes is proposed. The revealed mechanisms of the cold-induced secondary dormancy are important for climate-smart agriculture and food security.


Subject(s)
Beta vulgaris , Abscisic Acid/metabolism , Beta vulgaris/genetics , Germination/physiology , Plant Dormancy/genetics , Seeds/physiology
2.
Mol Plant Microbe Interact ; 24(7): 758-72, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21385013

ABSTRACT

Cercospora leaf spot disease, caused by the fungus Cercospora beticola, is the most destructive foliar disease of sugar beet (Beta vulgaris) worldwide. Despite the great agronomical importance of this disease, little is known about its underlying molecular processes. Technical resources are scarce for analyzing this important crop species. We developed a sugar beet microarray with 44,000 oligonucleotides that represent 17,277 cDNAs. During the four stages of C. beticola-B. vulgaris interactions, we profiled the transcriptional responses of three genotypes: susceptible, polygenic partial resistance, and monogenic resistant. Similar genes were induced in all three genotypes during infection but with striking differences in timing. The monogenic resistant genotype displayed strong defense responses at 1 day postinoculation (dpi). The other genotypes displayed defense responses in a later phase (15 dpi) of the infection cycle. The partially resistant genotype displayed a strong defense response in the late phase of the infection cycle. Furthermore, the partially resistant genotype expressed pathogen-related transcripts that the susceptible genotype lacked. These results indicate that resistance was achieved by the ability to mount an early defense response, and partial resistance was determined by additional defense and signaling transcripts that allowed effective defense in the late phase of the infection cycle.


Subject(s)
Beta vulgaris/genetics , Beta vulgaris/microbiology , Plant Diseases/genetics , Saccharomycetales/pathogenicity , Disease Susceptibility , Gene Expression Profiling , Gene Expression Regulation, Plant , Genetic Predisposition to Disease , Genotype , Host-Pathogen Interactions , Oligonucleotide Array Sequence Analysis , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/microbiology , Reverse Transcriptase Polymerase Chain Reaction , Saccharomycetales/genetics , Saccharomycetales/physiology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL