Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Language
Affiliation country
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1133345, 2023.
Article in English | MEDLINE | ID: mdl-36890919

ABSTRACT

Epilobium angustifolium L. is a medicinal plant well known for its anti-inflammatory, antibacterial, antioxidant, and anticancer properties related to its high polyphenols content. In the present study, we evaluated the antiproliferative properties of ethanolic extract of E. angustifolium (EAE) against normal human fibroblasts (HDF) and selected cancer cell lines, including melanoma (A375), breast (MCF7), colon (HT-29), lung (A549) and liver (HepG2). Next, bacterial cellulose (BC) membranes were applied as a matrix for the controlled delivery of the plant extract (BC-EAE) and characterized by thermogravimetry (TG), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) images. In addition, EAE loading and kinetic release were defined. Finally, the anticancer activity of BC-EAE was evaluated against the HT-29 cell line, which presented the highest sensitivity to the tested plant extract (IC50 = 61.73 ± 6.42 µM). Our study confirmed the biocompatibility of empty BC and the dose and time-dependent cytotoxicity of the released EAE. The plant extract released from BC-2.5%EAE significantly reduced cell viability to 18.16% and 6.15% of the control values and increased number apoptotic/dead cells up to 37.53% and 66.90% after 48 and 72 h of treatment, respectively. In conclusion, our study has shown that BC membranes could be used as a carrier for the delivery of higher doses of anticancer compounds released in a sustained manner in the target tissue.

2.
Int J Mol Sci ; 22(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200927

ABSTRACT

Bacterial cellulose membranes (BCs) are becoming useful as a drug delivery system to the skin. However, there are very few reports on their application of plant substances to the skin. Komagataeibacter xylinus was used for the production of bacterial cellulose (BC). The BC containing 5% and 10% ethanolic extract of Epilobium angustifolium (FEE) (BC-5%FEE and BC-10%FEE, respectively) were prepared. Their mechanical, structural, and antioxidant properties, as well as phenolic acid content, were evaluated. The bioavailability of BC-FESs using mouse L929 fibroblasts as model cells was tested. Moreover, In Vitro penetration through the pigskin of the selected phenolic acids contained in FEE and their accumulation in the skin after topical application of BC-FEEs was examined. The BC-FEEs were characterized by antioxidant activity. The BC-5% FEE showed relatively low toxicity to healthy mouse fibroblasts. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), 3-hydroxybenzoic acid (3-HB), and caffeic acid (CA) found in FEE were also identified in the membranes. After topical application of the membranes to the pigskin penetration of some phenolic acid and other antioxidants through the skin as well as their accumulation in the skin was observed. The bacterial cellulose membrane loaded by plant extract may be an interesting solution for topical antioxidant delivery to the skin.


Subject(s)
Antioxidants/administration & dosage , Cellulose/chemistry , Epilobium/chemistry , Fibroblasts/drug effects , Plant Extracts/administration & dosage , Skin/drug effects , Administration, Topical , Animals , Bacteria/chemistry , Fibroblasts/metabolism , Mice , Skin/metabolism , Swine
3.
Electron. j. biotechnol ; 41: 30-36, sept. 2019. graf, tab, ilus
Article in English | LILACS | ID: biblio-1053564

ABSTRACT

Background: Yarrowia lipolytica is a nonconventional, dimorphic yeast with multiple biotechnological applications. Considering the size of Y. lipolytica cells and a plethora of its morphological forms (spherical cells or hyphae and pseudohyphae), it is highly difficult to select a suitable carrier for this useful microorganism. Bacterial cellulose (BC) is currently considered one of the most promising immobilization carriers. In the current study, the usefulness of oil- and emulsion-modified BCs as a carrier for Y. lipolytica immobilization was investigated. Static and agitated cultures were conducted in media supplemented with oil or emulsion to improve carrier porosity. Results: It was found that the application of oil- and emulsion-modified BCs correlated with significantly higher efficiency of Y. lipolytica immobilization and hence higher yield than the yield achieved with an unmodified carrier. Increased efficiency of immobilization correlated with BC porosity-related parameters, which, in turn, depended on the size of oil droplets introduced into the culture medium. Moreover, changes in porosity-related parameters caused by the addition of oil or emulsion to the medium were observed when the cultures were conducted only under static conditions and not under agitated conditions. Conclusion: The application of oil- and emulsion-modified BCs as carriers significantly increased the efficiency of Y. lipolytica immobilization as compared to unmodified BC. The addition of oil or emulsion to the culture medium can be a simple but effective method to modify the porosity of BC-based carriers.


Subject(s)
Cellulose/metabolism , Yarrowia/metabolism , Immobilization , Polymers , Yeasts , Biotechnology , Plant Oils , Porosity , Yarrowia/chemistry , Nanostructures , Emulsions
SELECTION OF CITATIONS
SEARCH DETAIL