Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Sep Sci ; 45(1): 382-393, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34633729

ABSTRACT

Plant-derived natural dyes are used in a variety of formulated products, from food to cosmetics and pharmaceutics. In addition to their color, they also provide some bioactivity. While they are mostly analyzed with high-performance liquid chromatography, supercritical fluid chromatography was also employed for several dye families, mostly for carotenoids and chlorophylls, and more recently for anthraquinones and flavonoids. These supercritical fluid chromatography methods are described in this review. Because the dyes have different structures and structural variations (polarity, isomers, etc.), the best chromatographic system to achieve their separation is not always the same. Hydrophobic stationary phases are preferred for the most hydrophobic dyes (chlorophylls and carotenoids) while polar stationary phases are preferred for the polar dyes (anthraquinones and flavonoids). Regarding the mobile phase composition, chlorophylls and carotenoids are best eluted with moderate proportions of co-solvent in CO2 (about 40%), while the most polar glycosylated flavonoids require higher proportions of co-solvent and acidic additives. Because dyes are colorful, ultraviolet-visible detection is often sufficient, while mass spectrometry offers additional structural information. Furthermore, fundamental information can also be gained through chromatographic analysis of dyes: either solubility in supercritical fluids, in view of their extraction, or retention behavior providing an understanding of stationary phase properties.


Subject(s)
Carotenoids/chemistry , Chromatography, Supercritical Fluid/methods , Coloring Agents/chemistry , Flavonoids/chemistry , Carotenoids/isolation & purification , Chromatography, Supercritical Fluid/instrumentation , Coloring Agents/isolation & purification , Flavonoids/isolation & purification
2.
J Pharm Biomed Anal ; 193: 113736, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33176241

ABSTRACT

Biomolecules like proteins, peptides and nucleic acids widely emerge in pharmaceutical applications, either as synthetic active pharmaceutical ingredients, or from natural products as in traditional Chinese medicine. Liquid-phase chromatographic methods (LC) are widely employed for the analysis and/or purification of such molecules. On another hand, to answer the ever-increasing requests from scientists involved in biomolecules projects, other chromatographic methods emerge as useful complements to LC. In particular, there is a growing interest for chromatography with a mobile phase comprising pressurized carbon dioxide, which can be named either (i) supercritical (or subcritical) fluid chromatography (SFC) when CO2 is the major constituent of the mobile phase, or (ii) enhanced fluidity liquid chromatography (EFLC) when hydro-organic or purely organic solvents are the major constituents of the mobile phase. Despite the low polarity of CO2, supposedly inadequate to solubilize such biomolecules, SFC and EFLC were both employed in many occasions for this purpose. This paper specifically reviews the literature related to the SFC/EFLC analysis of free amino acids, peptides, proteins, nucleobases, nucleosides and nucleotides. The analytical conditions employed for specific molecular families are presented, with a focus on the nature of the stationary phase and the mobile phase composition. We also discuss the potential benefits of combining SFC/EFLC to LC in a single gradient elution, a method sometimes designated as unified chromatography (UC). Finally, detection issues are presented, and more particularly hyphenation to mass spectrometry.


Subject(s)
Carbon Dioxide , Chromatography, Supercritical Fluid , Amino Acids , Humans , Mass Spectrometry , Solvents
3.
J Chromatogr A ; 1632: 461582, 2020 Nov 22.
Article in English | MEDLINE | ID: mdl-33035852

ABSTRACT

Selective extraction is a great concern in the field of natural products. The interest is to apply specific conditions favouring the solubility of targeted secondary metabolites and avoiding the simultaneous extraction of unwanted ones. Different ways exist to reach selective extractions with suited conditions. These conditions can be determined from experimental studies through experimental design, but a full experimental design takes time, energy, and uses plant samples. Prediction from varied solubility models can also be applied allowing a better understanding of the final selected conditions and eventually less experiments. The aim of this work was to develop and use a chromatographic model to determine optimal extraction conditions without the need for numerous extraction experiments. This model would be applied on the selective extraction of the desired antioxidant compounds in rosemary leaves (rosmarinic and carnosic acids) vs chlorophyll pigments to limit the green colour in extracts. This model was achieved with Supercritical Fluid Chromatography (SFC) and then applied to Supercritical Fluid Extraction (SFE) and Pressurised Liquid Extraction (PLE) assays. SFC models predicted low solubility of chlorophylls for low (5%) and high (100%) percentage of solvent in carbon dioxide. Also, low solubility was predicted with acetonitrile solvent compared to methanol or ethanol. This was confirmed with different extractions performed using SFE with different percentages of solvent (5, 30, and 70%) and with the three solvents used in the SFC models (acetonitrile, methanol and ethanol). Also extractions using PLE were carried out using the same neat solvents in order to confirm the SFC models obtained for 100% of solvent. Globally, extractions validated the SFC models. Only some differences were observed between ethanol and methanol showing the complexity of plant extraction due to matrix effect. For all these extracts, the content of carnosic acid and rosmarinic acid was also monitored and selective extraction conditions of bioactive compounds could be determined.


Subject(s)
Chromatography, Supercritical Fluid/methods , Pressure , Abietanes/analysis , Antioxidants/analysis , Carbon Dioxide/analysis , Chlorophyll/analysis , Cinnamates/analysis , Depsides/analysis , Methanol/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Regression Analysis , Rosmarinus/chemistry , Solubility , Solvents/chemistry , Rosmarinic Acid
4.
J Chromatogr A ; 1616: 460772, 2020 Apr 12.
Article in English | MEDLINE | ID: mdl-31839358

ABSTRACT

Amino acids are most often analyzed in reversed-phase liquid chromatography after a derivatization procedure to render them sufficiently hydrophobic and detectable with UV or fluorimetric detection. Simpler methods should be possible to avoid additional chemical reactions. We present an improved method to analyze free amino acids with unified chromatography, that is to say with a wide elution gradient starting with supercritical fluid chromatography (SFC) conditions (high percentage of carbon dioxide) and ending with high-performance liquid chromatography (HPLC) conditions (100% co-solvent). The mobile phase composition was carefully adjusted to permit the elution of 21 natural amino acids (among which 19 proteinogenic) with very good peak shapes from a zwitterionic cinchona-based stationary phase (Chiralpak ZWIX(+)). Chiral separation was not desired. The mobile phase finally selected comprised carbon dioxide and a co-solvent (methanol containing 2% water and 20 mM methanesulfonic acid), ranging from 10 to 100% in 7 min followed by 3 min re-equilibration at 25 °C. A reversed pressure gradient (15 to 11 MPa) and a reversed flow rate gradient (3 to 1 mL/min) were applied to avoid reaching the upper pressure limit of the pumping system (40 MPa) and to favor high chromatographic efficiency at every stage of the elution gradient. Detection was achieved with electrospray ionization-mass spectrometry (ESI(+)-MS). The method is then fast and straightforward as no derivatization step is necessary, and all isobaric species were chromatographically resolved. To demonstrate the applicability of the method, it was applied to the quantitation of amino acids in food supplements commonly consumed by sportsmen, containing taurine (a common natural amino acid) or branched-chain amino acids (BCAA), namely valine, and the isobaric leucine and isoleucine. A standard addition method was examined for sensitivity, linearity, repeatability and intermediate precision.


Subject(s)
Amino Acids/analysis , Chromatography, High Pressure Liquid , Chromatography, Supercritical Fluid , Food Analysis/methods , Mass Spectrometry , Amino Acids/chemistry , Carbon Dioxide/chemistry , Cinchona/chemistry , Dietary Supplements/analysis , Food Analysis/instrumentation , Methanol/chemistry , Reproducibility of Results , Solvents/chemistry , Spectrometry, Mass, Electrospray Ionization
5.
Anal Bioanal Chem ; 411(19): 4909-4917, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30923860

ABSTRACT

In this project, we aimed at analyzing native (or free) amino acids with supercritical fluid chromatography coupled to mass spectrometric detection, with modern instruments and methods, and maintaining as simple a mobile phase as possible to ensure applicability of the method. The purpose was twofold: (i) a generic method allowing for satisfactory elution of a wide range of amino acids (acidic, basic, or neutral residue) and (ii) resolution of the enantiomeric pairs. The Chiralpak ZWIX (+) and (-) stationary phases were selected as they are well-known for the enantioresolution of amino acids in liquid chromatographic modes. A wide range elution gradient, starting with a large concentration of carbon dioxide (90%) and finishing at 100% solvent (methanol containing 70 mM ammonium formate and 7% water) allowed the elution of 18 native proteinogenic amino acids out of 19 injected. In these conditions, enantioselectivity was achieved for 16 of them. The basic amino acids (arginine, histidine, and lysine) were the most difficult to elute in these conditions, resulting in rather poor peak shapes. Cysteine was never observed in any of the conditions tested. Sample application was attempted with two food supplements, tablets containing a mixture of 17 proteinogenic amino acids and capsules containing taurine and theanine that were not present in the standards used for the method development. The sample preparation method was very simple, involving dissolution of the tablets and capsules in acidified water, filtration, and dilution with methanol. Mass spectrometric detection (electrospray ionization with single-quadrupole mass detection) allowed for unambiguous identification of most amino acids, except for the leucine and isoleucine isomers that were not separated by the generic gradient. The observation of taurine and theanine also suggests that the method should be generally applicable to other native amino acids than the proteinogenic amino acids selected for the development of this method. As peak shapes and signal-to-noise ratios could still be improved, further developments are wanted to upgrade this method. Due to the wide gradient (10 to 100% co-solvent in carbon dioxide), the method cannot truly be called either supercritical fluid chromatography (SFC) or enhanced-fluidity liquid chromatography (EFLC), but should be related to "unified chromatography" (UC), joining SFC and HPLC. Graphical abstract.


Subject(s)
Amino Acids/analysis , Chromatography, Supercritical Fluid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Amino Acids/standards , Dietary Supplements/analysis , Reference Standards , Stereoisomerism , Tablets
6.
Chirality ; 22(2): 242-51, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19551878

ABSTRACT

Enantiomeric separations of six amino-acid derivatives have been studied using packed-column supercritical fluid chromatography with two polysaccharide-based enantioselective stationary phases: cellulose tris(3,5-dimethylphenylcarbamate) and cellulose tris(3-chloro-4-methylphenylcarbamate) (Lux Cellulose-1 and -2). The effect of analyte structure on retention and separation was studied. Varied mobile phase compositions were investigated: alcohol modifier percentage was increased from 3 to 40% but smaller amounts were most effective in separating these compounds. Besides, ethanol was preferred to methanol or isopropanol as it proved to be a good compromise to achieve sufficient resolution in a reasonable analysis time. Moreover, a carbon dioxide-ethanol mixture allows performing analyses in safe and green conditions. The effect of temperature at constant mobile phase composition was explored between 10 and 40 degrees C. In most cases, increasing the temperature improved the chiral separation, up to an optimum temperature. The results are discussed in line with the structure variation of the racemic derivatives analyzed and the two columns are compared. The two columns were shown to provide complementary selectivities for the investigated solutes: whereas Lux 1 provided separation for five of the six racemates, Lux 2 could resolve the last racemic mixture. Finally, optimized conditions of separation are defined.


Subject(s)
Amino Acids/chemistry , Cellulose/chemistry , Chromatography, Supercritical Fluid/methods , Stereoisomerism , Phosphines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL