Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
J Histochem Cytochem ; 68(12): 907-927, 2020 12.
Article in English | MEDLINE | ID: mdl-32639183

ABSTRACT

Inter-α-trypsin inhibitor (IαI) family members are ancient and unique molecules that have evolved over several hundred million years of vertebrate evolution. IαI is a complex containing the proteoglycan bikunin to which heavy chain proteins are covalently attached to the chondroitin sulfate chain. Besides its matrix protective activity through protease inhibitory action, IαI family members interact with extracellular matrix molecules and most notably hyaluronan, inhibit complement, and provide cell regulatory functions. Recent evidence for the diverse roles of the IαI family in both biology and pathology is reviewed and gives insight into their pivotal roles in tissue homeostasis. In addition, the clinical uses of these molecules are explored, such as in the treatment of inflammatory conditions including sepsis and Kawasaki disease, which has recently been associated with severe acute respiratory syndrome coronavirus 2 infection in children.


Subject(s)
Alpha-Globulins/metabolism , Alpha-Globulins/analysis , Animals , Arthritis/metabolism , Arthritis/pathology , Asthma/metabolism , Asthma/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Fibrosis , Humans , Hyaluronic Acid/metabolism , Inflammation/metabolism , Inflammation/pathology , Sepsis/metabolism , Sepsis/pathology
2.
Matrix Biol ; 28(3): 121-8, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19379666

ABSTRACT

Understanding biology at the systems level is a powerful method for discovery of previously unrecognized molecular pathways and mechanisms in human disease. The application of proteomics to arthritis research has lagged behind many other clinical targets, partly due to the unique biochemical properties of cartilage and associated biological fluids such as synovial fluid. In recent years, however, proteomic-based studies in cartilage and arthritis research have risen sharply and have started to make a significant impact on our understanding of joint disease, including the discovery of new and promising biomarkers of cartilage degeneration, a hallmark of arthritis. In this review we will make the case for the ongoing proteomic analysis of cartilage and other tissues affected by joint disease, overview some of the core proteomic techniques and discuss how the challenge of cartilage proteomics has been met through technical innovation. The major outcomes and information obtained from recent proteomic analysis of synovial fluid, cartilage and chondrocytes will also be described. In addition, we present some novel insights into post-translational regulation of cartilage proteins, through proteomic identification of proteolytic fragments in mouse cartilage extracts and explant culture media. We conclude with our prediction of how emerging proteomic technologies that have yet to be applied in arthritis research are likely to contribute further important information.


Subject(s)
Arthritis/metabolism , Biomedical Research/trends , Cartilage/physiology , Proteomics/methods , Animals , Cartilage/anatomy & histology , Cartilage/chemistry , Cartilage/metabolism , Chondrocytes/chemistry , Chondrocytes/metabolism , Humans , Proteins/analysis , Proteins/metabolism , Synovial Fluid/chemistry , Synovial Fluid/metabolism
3.
Free Radic Biol Med ; 44(12): 1973-2001, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18423414

ABSTRACT

The extracellular compartments of most biological tissues are significantly less well protected against oxidative damage than intracellular sites and there is considerable evidence for such compartments being subject to a greater oxidative stress and an altered redox balance. However, with some notable exceptions (e.g., plasma and lung lining fluid) oxidative damage within these compartments has been relatively neglected and is poorly understood. In particular information on the nature and consequences of damage to extracellular matrix is lacking despite the growing realization that changes in matrix structure can play a key role in the regulation of cellular adhesion, proliferation, migration, and cell signaling. Furthermore, the extracellular matrix is widely recognized as being a key site of cytokine and growth factor binding, and modification of matrix structure might be expected to alter such behavior. In this paper we review the potential sources of oxidative matrix damage, the changes that occur in matrix structure, and how this may affect cellular behavior. The role of such damage in the development and progression of inflammatory diseases is discussed.


Subject(s)
Extracellular Matrix/metabolism , Free Radicals/metabolism , Oxidants/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Animals , Arthritis/metabolism , Cardiovascular Diseases/metabolism , Cell Compartmentation/physiology , Diabetes Mellitus/metabolism , Humans , Kidney Diseases/metabolism , Lung Diseases/metabolism , Nitric Oxide Synthase/metabolism , Periodontal Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL