Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Planta Med ; 86(7): 496-504, 2020 May.
Article in English | MEDLINE | ID: mdl-32219782

ABSTRACT

The present study was performed to examine the antihypertensive effect of neferine in hypertensive rats and its relaxant mechanisms in isolated rat thoracic aorta. The antihypertensive effect was evaluated by tail-cuff methods on NG-nitro-L-arginine methyl ester (L-NAME) (40 mg/kg BW) 4-week hypertensive-induced hypertensive rats. The vasorelaxant effect and its mechanisms were studied by the organ bath technique in the thoracic aorta isolated from normotensive rats. The results indicated that the treatment of neferine (1 mg/kg and 10 mg/kg) markedly decreased the systolic blood pressure (SBP) when compared with the hypertension group (137.75 ± 10.14 mmHg and 132.23 ± 9.5 mmHg, respectively, p < 0.001), without affecting the heart rate. Moreover, neferine (10-12 - 10-4 M) exhibited concentration-dependent vasorelaxation in endothelium-intact rings (Emax values = 98.95 ± 0.66% and pD2 = 7.93 ± 0.28) and endothelium-denuded rings (Emax values = 90.61 ± 1.91% and pD2 = 6.85 ± 0.36). The effects of neferine were reduced by pre-incubation with L-NAME and 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) but not with pre-incubation with indomethacin and K+channel blockers. Neferine attenuated the contractions induced by phenylephrine and caffeine in a Ca2+-free solution and also inhibited in CaCl2- and phenylephrine-induced contracted rings. Our study suggests that neferine exhibited hypertensive potential, induced vasorelaxation through the endothelium nitric oxide synthase (eNOS)/nitric oxide (NO)/soluble guanylyl cyclase (sGC) pathway and involved the modulation of Ca2+ influx through Ca2+ channels and intracellular Ca2+ release from the sarcoplasmic reticulum.


Subject(s)
Antihypertensive Agents , Vasodilator Agents , Animals , Aorta, Thoracic , Benzylisoquinolines , Endothelium, Vascular , Nitric Oxide , Rats , Vasodilation
2.
Phytother Res ; 29(11): 1806-13, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26360646

ABSTRACT

This study was designed to examine the vasorelaxant effects of hexahydrocurcumin (HHC), one of the major natural metabolites of curcumin from Curcuma longa, on rat isolated aortic rings, and the underlying mechanisms. Isometric tension of the aortic rings was recorded using organ bath system. HHC (1 nM to 1 mM) relaxed the endothelium-intact aortic rings pre-contracted with PE and KCl in a concentration-dependent manner. Removal of the endothelium did not alter the effect of HHC-induced relaxation. In Ca(2+)-free Krebs solution, HHC significantly inhibited the CaCl2-induced contraction in high K(+) depolarized rings and suppressed the transient contraction induced by PE and caffeine in a concentration-dependent manner. HHC was also observed to relax phobal-12-myristate-13-acetate (PMA), an activator of protein kinase C (PKC), precontracted aortic rings in a concentration-dependent manner with EC50 values equivalent to 93.36 ± 1.03 µM. In addition, pre-incubation with propranolol (a ß-adrenergic receptor blocker) significantly attenuated the HHC-induced vasorelaxation. These results suggest that the vasorelaxant effect of HHC is mediated by the endothelium-independent pathway, probably because of the inhibition of extracellular Ca(2+) influx through voltage-operated Ca(2+) channels and receptor-operated Ca(2+) channels, the inhibition of Ca(2+) mobilization from intracellular stores, as well as inhibition of PKC-mediated Ca(2+)-independent contraction. Moreover, HHC produces vasorelaxant effects probably by stimulating the ß-adrenergic receptor.


Subject(s)
Curcuma , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Aorta, Thoracic/drug effects , Endothelium, Vascular/drug effects , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL