Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Physiol Behav ; 275: 114431, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38072036

ABSTRACT

Intermittent fasting (IMF) is associated with many health benefits in animals and humans. Yet, little is known if an IMF diet affects mood and cognitive processing. We have previously identified that IMF in diet-induced obese males increases norepinephrine and dopamine content in the hypothalamus and increases arcuate neuropeptide Y (NPY) gene expression more than in ad libitum control males. This suggests that IMF may improve cognition through activation of the hindbrain norepinephrine neuronal network and reverse the age-dependent decline in NPY expression. Less is known about the association between anxiety and IMF. Although, in humans, IMF during Ramadan may alleviate anxiety. Here, we address the impact of IMF on anxiety-like behavior using the open field test, hippocampal-dependent memory using the Y-maze and spatial object recognition, and hippocampal-independent memory using novel object recognition in middle-aged male and female (12 mo) and aged male and female (18 mo) mice. Using ELISA, we determined norepinephrine (NE) content in the dorsal hippocampus (DH) and prefrontal cortex (PFC). We also investigated gene expression in the arcuate nucleus (ARC), the lateral hypothalamus (LH), and the locus coeruleus (LC). In IMF-treated females at both ages, we observed an improvement in spatial navigation although an impairment in spatial object orientation. IMF-treated females (12 mo) had a reduction and IMF-treated males (12 mo) displayed an improvement in novel object recognition memory. IMF-treated females (18 mo) exhibited anxiolytic-like behavior and increased locomotion. In the DH, IMF-treated males (12 mo) had a greater amount of NE content and IMF-treated males (18 mo) had a reduction. In the ARC, IMF-treated males (12 mo) exhibited an increase in Agrp and Npy and a decrease in Adr1a. In the ARC, IMF-treated males (18 mo) exhibited an increase in Npy and a decrease in Adr1a; females had a trending decrease in Cart. In the LH at 12 months, IMF-treated males had a decrease in Npy5r, Adr1a, and Adr1b; both males and females had a reduction in Npy1r. In the LH, IMF-treated females (18 mo) had a decrease in Hcrt. In the LC at both ages, mice largely exhibited sex effects. Our findings indicate that IMF produces alterations in mood, cognition, DH NE content, and ARC, LH, and LC gene expression depending on sex and age.


Subject(s)
Intermittent Fasting , Norepinephrine , Humans , Mice , Male , Female , Animals , Middle Aged , Aged , Norepinephrine/metabolism , Neuropeptide Y/metabolism , Hypothalamus/metabolism , Hippocampus/metabolism
2.
Reprod Toxicol ; 94: 65-74, 2020 06.
Article in English | MEDLINE | ID: mdl-32360330

ABSTRACT

After the phase-out of polybrominated diphenyl ethers, their replacement compounds, organophosphate flame retardants (OPFRs) became ubiquitous in home and work environments. OPFRs, which may act as endocrine disruptors, are detectable in human urine, breast milk, and blood samples collected from pregnant women. However, the effects of perinatal OPFR exposure on offspring homeostasis and gene expression remain largely underexplored. To address this knowledge gap, virgin female mice were mated and dosed with either a sesame oil vehicle or an OPFR mixture (tris(1,3-dichloro-2-propyl)phosphate, tricresyl phosphate, and triphenyl phosphate, 1 mg/kg each) from gestational day (GD) 7 to postnatal day (PND) 14. Hypothalamic and hepatic tissues were collected from one female and one male pup per litter on PND 0 and PND 14. Expression of genes involved in energy homeostasis, reproduction, glucose metabolism, and xenobiotic metabolism were analyzed using quantitative real-time PCR. In the mediobasal hypothalamus, OPFR increased Pdyn, Tac2, Esr1, and Pparg in PND 14 females. In the liver, OPFR increased Pparg and suppressed Insr, G6pc, and Fasn in PND 14 males and increased Esr1, Foxo1, Dgat2, Fasn, and Cyb2b10 in PND 14 females. We also observed striking sex differences in gene expression that were dependent on the age of the pup. Collectively, these data suggest that maternal OPFR exposure alters hypothalamic and hepatic development by influencing neonatal gene expression in a sex-dependent manner. The long-lasting consequences of these changes in expression may disrupt puberty, hormone sensitivity, and metabolism of glucose, fatty acids, and triglycerides in the maturing juvenile.


Subject(s)
Flame Retardants/toxicity , Gene Expression Regulation, Developmental/drug effects , Hypothalamus/drug effects , Liver/drug effects , Organophosphates/toxicity , Animals , Animals, Newborn , Female , Glucose/metabolism , Hypothalamus/metabolism , Lipid Metabolism , Liver/metabolism , Male , Maternal-Fetal Exchange , Mice, Inbred C57BL , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL