Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
PLoS One ; 19(1): e0296259, 2024.
Article in English | MEDLINE | ID: mdl-38175845

ABSTRACT

Inflammation is a temporary response of the immune system that can be treated using common anti-inflammatory drugs. However, prolonged use of these drugs increases the risk of adverse side effects. Accordingly, there is an increasing need for alternative treatments for inflammation with fewer side effects. Exosomes are extracellular vesicles secreted by most eukaryotic cells and have been studied as a candidate for cell-free therapy for inflammatory diseases due to their immunomodulatory and anti-inflammatory properties. In recent years, the focus of exosome research has shifted from animal cell-derived exosomes to plant-derived exosome-like nanoparticles (PDENs). Plant-derived exosome-like nanoparticles (PDENs) are easier to obtain, have minimal safety concerns, and can be produced in higher quantities and lower cost than exosomes derived from animal cells. In this study, the isolation and analysis of the anti-inflammatory potential of PDENs from black nightshade berries (Solanum nigrum L.) were carried out. The results of isolation and characterization showed that PDENs had a spherical morphology, measuring around 107 nm with zeta potential of -0.6 mV, and had a protein concentration of 275.38 µg/mL. PDENs were also shown to be internalized by RAW264.7 macrophage cell line after 2 hours of incubation and had no cytotoxicity effect up to the concentration of 2.5 µg/mL. Furthermore, exposure to several doses of PDENs to the LPS-stimulated RAW264.7 cell significantly decreased the expression of pro-inflammatory cytokine gene IL-6, as well as the expression of IL-6 protein up to 97,28%. GC-MS analysis showed the presence of neral, a monoterpene compound with known anti-inflammatory properties, which may contribute to the anti-inflammatory activity of PDENs isolated from Solanum nigrum L. berries. Taken together, the present study was the first to isolate and characterize PDENs from Solanum nigrum L. berries. The results of this study also demonstrated the anti-inflammatory activity of PDEN by suppressing the production of IL-6 in LPS-stimulated RAW264.7 cells.


Subject(s)
Exosomes , Nanoparticles , Solanum nigrum , Animals , Anti-Inflammatory Agents/pharmacology , Exosomes/chemistry , Fruit/chemistry , Inflammation , Interleukin-6/genetics , Lipopolysaccharides , Plant Extracts , Mice , RAW 264.7 Cells
2.
J Biosci Bioeng ; 129(5): 581-587, 2020 May.
Article in English | MEDLINE | ID: mdl-31901317

ABSTRACT

Melaleuca cajuputi subsp. cajuputi is one of the Australian Melaleuca species commonly found in Pulau Buru (Maluku, Indonesia). Its oil, the M. cajuputi essential oil (MCEO), has been utilized as the main flavor of the Indonesian functional food, Cajuputs Candy. However, the availability of MCEO is becoming limited. On the other hand, Indonesia has many other potential MCEO sources which can be developed as flavor ingredient. Thus, it is noteworthy to explore these new MCEO sources by studying their sensory characteristics and metabolite profiles. This study was conducted to identify potential metabolites that are correlated to sensory attributes of MCEO by using the metabolomics approach. The metabolite profiles of thirteen MCEOs from different origins were analyzed by gas chromatography-mass spectrometry while sensory analyses on Cajuputs Candy were conducted by difference-from-control and rate-all-that-apply tests. Sixty metabolites from the MCEO were annotated that includes 1,8-cineole, α-terpineol, caryophyllene, α-pinene, and γ-terpinene. Sensory analysis revealed cooling aftertaste and sweet taste as favorable attributes. Further analysis using Orthogonal Partial Least Square indicated that 1,8-cineole and γ-terpinene were correlated with cooling aftertaste, while 1,8-cineole and caryophyllene were also correlated with sweet taste. In contrast, linalool and nerolidol were associated with the feature of the most characteristic manufacturer's products which have unfavorable attributes such as floral, iodophor-like, metallic, and soapy attributes. The identification of these metabolites will be useful for the selection of MCEOs that can potentially be used as flavor.


Subject(s)
Flavoring Agents/chemistry , Melaleuca/chemistry , Oils, Volatile/chemistry , Plant Oils/chemistry , Australia , Flavoring Agents/metabolism , Gas Chromatography-Mass Spectrometry , Humans , Indonesia , Melaleuca/metabolism , Metabolomics , Oils, Volatile/metabolism , Plant Oils/metabolism , Taste
3.
Food Funct ; 8(2): 584-594, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-27730226

ABSTRACT

In recent years, there has been significant progress in edible emulsion technology especially with respect to creating and stabilizing surfactant-free emulsion systems for food applications. In this paper, we demonstrate the fabrication of high internal phase emulsions (HIPE) (φoil = 0.82) stabilized using colloidal complexes of non-gelling biopolymers (at concentrations as low as 0.3 wt%). The colloidal complexes were pre-formed by combining whey protein isolate (WPI) and low-methoxyl pectin (LMP) at three different pH values (i.e. pH 3.5, 4.5, 5.5) and used further for fabricating stable HIPEs. In addition to the effect of pH, the influence of total biopolymer concentration on the formation and properties of HIPEs was also evaluated. Depending on the total concentration of biopolymers used, the WPI-LMP complexes (formed at pH 4.5) showed a Z-average diameter in the range of 250-350 nm. It was found that the formation of HIPEs was strongly influenced by the pH of the colloidal complexes. At a pH close to the isoelectric point of WPI (≈pH 4.8) and WPI-LMP complexes (≈pH 3.4), severe aggregation of colloidal particles occurred, resulting in poor formation and stability of HIPEs. On comparing the stabilization behaviour of the complexes with the uncomplexed protein, it was noticed that the former provided comparatively better stabilization to the HIPEs against coalescence at pH 4.5 and 5.5. Based on the rheological data (low amplitude oscillatory shear rheology and flow measurements), all HIPE samples showed viscoelastic and shear-thinning behaviour. We believe that such viscoelastic gel-like systems could find potential commercial applications in the development of label-friendly novel food products with interesting textures.


Subject(s)
Pectins/chemistry , Polymers/chemistry , Whey Proteins/chemistry , Emulsions/chemistry , Hydrogen-Ion Concentration , Rheology , Viscosity
4.
Crit Rev Food Sci Nutr ; 54(3): 373-88, 2014.
Article in English | MEDLINE | ID: mdl-24188308

ABSTRACT

The development of obesity is related to the regulation of energy intake, energy expenditure, and energy storage in the body. Increasing energy expenditure by inducing lipolysis followed by fat oxidation is one of the alternatives which could help to reverse this increasingly widespread condition. Currently, there is no approved drug targeting on stimulation of energy expenditure available. The use of herbal medicines has become a preferred alternative, supported by the classical consensus on the innocuity of herbal medicine vs synthetic drugs, something that often lacks a scientific basis (ban on Ephedra, for example). The inclusion of functional food in the daily diet has also been promoted although its efficacy requires further investigation. This review summarizes the results of recent work focused on the investigation of edible plant materials targeted at various important pathways related to stimulation of energy expenditure. The aim is to evaluate a number of plants that may be of interest for further studies because of their potential to provide novel lead compounds or functional foods which may be used to combat obesity, but require further studies to evaluate their antiobesity activity in humans.


Subject(s)
Energy Metabolism/drug effects , Plants, Edible/chemistry , Energy Intake/drug effects , Exercise , Functional Food , Humans , Obesity/prevention & control , Thermogenesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL