Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Neurology ; 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36008148

ABSTRACT

BACKGROUND AND OBJECTIVES: Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is a developmental epileptic encephalopathy characterized by seizure improvement after pyridoxine supplementation. Adjunct lysine reduction therapies reduce the accumulation of putative neurotoxic metabolites with the goal to improve developmental outcomes. Our objective was to examine the association between treatment with lysine reduction therapies and cognitive outcomes. METHODS: Participants were recruited from within the International Registry for Patients with Pyridoxine-Dependent Epilepsy from August 2014 through March 2021. The primary outcome was standardized developmental test scores associated with overall cognitive ability. The relationship between test scores and treatment was analyzed with multivariable linear regression using a mixed-effects model. A priori, we hypothesized that treatment in early infancy with pyridoxine and lysine reduction therapies would result in a normal developmental outcome. A sub-analysis was performed to evaluate the association between cognitive outcome and lysine reduction therapies initiated in the first six months of life. RESULTS: A total of 112 test scores from 60 participants were available. On average, treatment with pyridoxine and lysine reduction therapies was associated with a non-significant increase of 6.9 points (95% CI -2.7 to 16.5) on developmental testing compared to treatment with pyridoxine alone. For the sub-analysis, a total of 14 developmental testing scores were available from 8 participants. On average, treatment with pyridoxine and lysine reduction therapies in the first six months of life was associated with a significant increase of 21.9 points (95% CI 1.7 to 42.0) on developmental testing. DISCUSSION: Pyridoxine and lysine reduction therapies at any age was associated with mild improvement in developmental testing and treatment in early infancy was associated with a clinically significant increase in developmental test scores. These results provide insight into the mechanism of intellectual and developmental disability in PDE-ALDH7A1 and emphasize the importance of treatment in early infancy with both pyridoxine and lysine reduction therapies. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that in PDE-ALDH7A1, pyridoxine plus lysine reduction therapies compared to pyridoxine alone is not significantly associated with overall higher developmental testing scores, but treatment in the first six months of life is associated with significantly higher developmental testing scores.

2.
Mol Genet Metab ; 135(4): 350-356, 2022 04.
Article in English | MEDLINE | ID: mdl-35279367

ABSTRACT

BACKGROUND: Seventy-five percent of patients with pyridoxine-dependent epilepsy due to α-aminoadipic semialdehyde dehydrogenase deficiency (PDE-ALDH7A1) suffer intellectual developmental disability despite pyridoxine treatment. Adjunct lysine reduction therapies (LRT), aimed at lowering putative neurotoxic metabolites, are associated with improved cognitive outcomes. However, possibly due to timing of treatment, not all patients have normal intellectual function. METHODS: This retrospective, multi-center cohort study evaluated the effect of timing of pyridoxine monotherapy and pyridoxine with adjunct LRT on neurodevelopmental outcome. Patients with confirmed PDE-ALDH7A1 with at least one sibling with PDE-ALDH7A1 and a difference in age at treatment initiation were eligible and identified via the international PDE registry, resulting in thirty-seven patients of 18 families. Treatment regimen was pyridoxine monotherapy in ten families and pyridoxine with adjunct LRT in the other eight. Primary endpoints were standardized and clinically assessed neurodevelopmental outcomes. Clinical neurodevelopmental status was subjectively assessed over seven domains: overall neurodevelopment, speech/language, cognition, fine and gross motor skills, activities of daily living and behavioral/psychiatric abnormalities. RESULTS: The majority of early treated siblings on pyridoxine monotherapy performed better than their late treated siblings on the clinically assessed domain of fine motor skills. For siblings on pyridoxine and adjunct LRT, the majority of early treated siblings performed better on clinically assessed overall neurodevelopment, cognition, and behavior/psychiatry. Fourteen percent of the total cohort was assessed as normal on all domains. CONCLUSION: Early treatment with pyridoxine and adjunct LRT may be beneficial for neurodevelopmental outcome. When evaluating a more extensive neurodevelopmental assessment, the actual impairment rate may be higher than the 75% reported in literature. TAKE- HOME MESSAGE: Early initiation of lysine reduction therapies adjunct to pyridoxine treatment in patients with PDE-ALDH7A1 may result in an improved neurodevelopmental outcome.


Subject(s)
Lysine , Pyridoxine , Activities of Daily Living , Cohort Studies , Epilepsy , Humans , Pyridoxine/therapeutic use , Retrospective Studies
3.
Orphanet J Rare Dis ; 16(1): 126, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33691734

ABSTRACT

Parents of children with severe inborn errors of metabolism frequently face stressful events related to the disease of their child and are consequently at high risk for developing parental posttraumatic stress disorder (PTSD). Assessment and subsequent treatment of PTSD in these parents is however not common in clinical practice. PTSD can be effectively treated by Eye Movement Desensitization and Reprocessing (EMDR), however no studies have been conducted yet regarding the effect of EMDR for parental PTSD. EMDR is generally offered in multiple weekly sessions which may preclude participation of parents as they are generally overburdened by the ongoing and often intensive care for their child. Therefore, we offered time-limited EMDR with a maximum of four sessions over two subsequent days to two parents of mucopolysaccharidosis type III (MPS III) patients to explore its potential effects. Both qualitative and quantitative outcomes were used to evaluate treatment effects. Both parents felt more resilient and competent to face future difficulties related to the disease of their child, and no adverse effects were reported. Quantitative outcomes showed a clinically significant decrease in post traumatic stress symptoms and comorbid psychological distress from pre- to post treatment, and these beneficial effects were maintained at follow-up. In conclusion, time-limited EMDR may be a highly relevant treatment for traumatized parents of children with MPS III, and probably also for parents of children with other rare progressive disorders. Further research is needed to validate the efficacy of EMDR in this specific population.


Subject(s)
Eye Movement Desensitization Reprocessing , Metabolic Diseases , Stress Disorders, Post-Traumatic , Child , Eye Movements , Humans , Parents , Stress Disorders, Post-Traumatic/therapy , Treatment Outcome
4.
Clin Nutr ; 40(3): 1396-1404, 2021 03.
Article in English | MEDLINE | ID: mdl-32948349

ABSTRACT

BACKGROUND & AIMS: Medium chain triglyceride (MCT) supplementation is often recommended as treatment for patients with long-chain fatty acid ß-oxidation (lcFAO) disorders, since they can be utilized as an energy source without the use of the defective enzyme. However, studies in mice and preterm infants suggest that not all medium-chain fatty acids (MCFA) are oxidized and may undergo elongation to long-chain fatty acids (LCFA). In this single blinded study, we explored the metabolic fates of MCT in healthy individuals using a 13C-labeled MCT tracer. METHOD: Three healthy males in rest received on two test days a primed continuous infusion of glyceryl tri[1,2,3,4-13C4]-octanoate with either an isocaloric supplementation of 1) exclusively MCT (MCT-only) or 2) a mixture of MCT, proteins and carbohydrates (MCT-mix). Gas chromatography - combustion - isotope ratio mass spectrometry (GC-C-IRMS) was used to determine 13C-enrichment of long-chain fatty acids in plasma and of 13CO2 in exhaled air. RESULTS: When provided as single energy source, an estimated 42% of administered MCT was converted to CO2. In combination with carbohydrates and proteins in the diet, oxidation of MCT was higher (62%). In both diets <1% of 13C-label was incorporated in LCFA in plasma, indicating that administered MCT underwent chain-elongation to LCT. CONCLUSIONS: Although the relative MCT oxidation rate was higher when combined with carbohydrates and protein, quantitatively more MCT was oxidized when given an isocaloric meal with solely MCT. As these results were obtained in the resting state opposed to during exercise, it is too early to give a recommendation concerning the use of MCT in lcFAO disorders. The data show that in resting healthy individuals only a very small part of the MCT is traced back as LCFA in plasma, suggesting that MCT treatment does not result in a large LCFA burden, however further research on storage of MCT in tissues is warranted. REGISTRATION: The study was registered in the Nederlands Trialregister. Protocol ID: Trial NL7417 (NTR7650).


Subject(s)
Carbon Isotopes , Fatty Acids/blood , Triglycerides/administration & dosage , Triglycerides/metabolism , Adult , Breath Tests , Caprylates , Carbon Dioxide/metabolism , Diet , Humans , Isotope Labeling , Male , Oxidation-Reduction
5.
J Inherit Metab Dis ; 44(1): 178-192, 2021 01.
Article in English | MEDLINE | ID: mdl-33200442

ABSTRACT

Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an autosomal recessive condition due to a deficiency of α-aminoadipic semialdehyde dehydrogenase, which is a key enzyme in lysine oxidation. PDE-ALDH7A1 is a developmental and epileptic encephalopathy that was historically and empirically treated with pharmacologic doses of pyridoxine. Despite adequate seizure control, most patients with PDE-ALDH7A1 were reported to have developmental delay and intellectual disability. To improve outcome, a lysine-restricted diet and competitive inhibition of lysine transport through the use of pharmacologic doses of arginine have been recommended as an adjunct therapy. These lysine-reduction therapies have resulted in improved biochemical parameters and cognitive development in many but not all patients. The goal of these consensus guidelines is to re-evaluate and update the two previously published recommendations for diagnosis, treatment, and follow-up of patients with PDE-ALDH7A1. Members of the International PDE Consortium initiated evidence and consensus-based process to review previous recommendations, new research findings, and relevant clinical aspects of PDE-ALDH7A1. The guideline development group included pediatric neurologists, biochemical geneticists, clinical geneticists, laboratory scientists, and metabolic dieticians representing 29 institutions from 16 countries. Consensus guidelines for the diagnosis and management of patients with PDE-ALDH7A1 are provided.


Subject(s)
Arginine/administration & dosage , Dietary Supplements , Epilepsy/diet therapy , Epilepsy/diagnosis , Aldehyde Dehydrogenase/deficiency , Consensus , Epilepsy/drug therapy , Humans , International Cooperation , Lysine/deficiency , Pyridoxine/therapeutic use
6.
J Inherit Metab Dis ; 43(4): 787-799, 2020 07.
Article in English | MEDLINE | ID: mdl-31955429

ABSTRACT

A maladaptive shift from fat to carbohydrate (CHO) oxidation during exercise is thought to underlie myopathy and exercise-induced rhabdomyolysis in patients with fatty acid oxidation (FAO) disorders. We hypothesised that ingestion of a ketone ester (KE) drink prior to exercise could serve as an alternative oxidative substrate supply to boost muscular ATP homeostasis. To establish a rational basis for therapeutic use of KE supplementation in FAO, we tested this hypothesis in patients deficient in Very Long-Chain acyl-CoA Dehydrogenase (VLCAD). Five patients (range 17-45 y; 4 M/1F) patients were included in an investigator-initiated, randomised, blinded, placebo-controlled, 2-way cross-over study. Patients drank either a KE + CHO mix or an isocaloric CHO equivalent and performed 35 minutes upright cycling followed by 10 minutes supine cycling inside a Magnetic Resonance scanner at individual maximal FAO work rate (fatmax; approximately 40% VO2 max). The protocol was repeated after a 1-week interval with the alternate drink. Primary outcome measures were quadriceps phosphocreatine (PCr), Pi and pH dynamics during exercise and recovery assayed by in vivo 31 P-MR spectroscopy. Secondary outcomes included plasma and muscle metabolites and respiratory gas exchange recordings. Ingestion of KE rapidly induced mild ketosis and increased muscle BHB content. During exercise at FATMAX, VLCADD-specific plasma acylcarnitine levels, quadriceps glycolytic intermediate levels and in vivo Pi/PCr ratio were all lower in KE + CHO than CHO. These results provide a rational basis for future clinical trials of synthetic ketone ester supplementation therapy in patients with FAO disorders. Trial registration: ClinicalTrials.gov. Protocol ID: NCT03531554; METC2014.492; ABR51222.042.14.


Subject(s)
Beverages , Congenital Bone Marrow Failure Syndromes/diet therapy , Endurance Training , Ketosis/chemically induced , Lipid Metabolism, Inborn Errors/diet therapy , Mitochondrial Diseases/diet therapy , Muscular Diseases/diet therapy , Adolescent , Adult , Blood Glucose/analysis , Carnitine/analogs & derivatives , Carnitine/blood , Congenital Bone Marrow Failure Syndromes/metabolism , Cross-Over Studies , Diet, Ketogenic , Esters/administration & dosage , Exercise Test , Female , Humans , Ketones/administration & dosage , Lipid Metabolism, Inborn Errors/metabolism , Magnetic Resonance Spectroscopy , Male , Middle Aged , Mitochondrial Diseases/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/metabolism , Netherlands , Pulmonary Gas Exchange , Young Adult
7.
Front Pharmacol ; 11: 616834, 2020.
Article in English | MEDLINE | ID: mdl-33597881

ABSTRACT

Patients with a deficiency in very long-chain acyl-CoA dehydrogenase (VLCAD), an enzyme that is involved in the mitochondrial beta-oxidation of long-chain fatty acids, are at risk for developing cardiac arrhythmias. In human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), VLCAD deficiency (VLCADD) results in a series of abnormalities, including: 1) accumulation of long-chain acylcarnitines, 2) action potential shortening, 3) higher systolic and diastolic intracellular Ca2+ concentrations, and 4) development of delayed afterdepolarizations. In the fatty acid oxidation process, carnitine is required for bidirectional transport of acyl groups across the mitochondrial membrane. Supplementation has been suggested as potential therapeutic approach in VLCADD, but its benefits are debated. Here, we studied the effects of carnitine supplementation on the long-chain acylcarnitine levels and performed electrophysiological analyses in VLCADD patient-derived hiPSC-CMs with a ACADVL gene mutation (p.Val283Ala/p.Glu381del). Under standard culture conditions, VLCADD hiPSC-CMs showed high concentrations of long-chain acylcarnitines, short action potentials, and high delayed afterdepolarizations occurrence. Incubation of the hiPSC-CMs with 400 µM L-carnitine for 48 h led to increased long-chain acylcarnitine levels both in medium and cells. In addition, carnitine supplementation neither restored abnormal action potential parameters nor the increased occurrence of delayed afterdepolarizations in VLCADD hiPSC-CMs. We conclude that long-chain acylcarnitine accumulation and electrophysiological abnormalities in VLCADD hiPSC-CMs are not normalized by carnitine supplementation, indicating that this treatment is unlikely to be beneficial against cardiac arrhythmias in VLCADD patients.

8.
J Inherit Metab Dis ; 42(1): 159-168, 2019 01.
Article in English | MEDLINE | ID: mdl-30740737

ABSTRACT

BACKGROUND: Patients with very long chain acyl-CoA dehydrogenase deficiency (VLCADD), a long chain fatty acid oxidation disorder, are traditionally treated with a long chain triglyceride (LCT) restricted and medium chain triglyceride (MCT) supplemented diet. Introduction of VLCADD in newborn screening (NBS) programs has led to the identification of asymptomatic newborns with VLCADD, who may have a more attenuated phenotype and may not need dietary adjustments. OBJECTIVE: To define dietary strategies for individuals with VLCADD based on the predicted phenotype. METHOD: We evaluated long-term dietary histories of a cohort of individuals diagnosed with VLCADD identified before the introduction of VLCADD in NBS and their beta-oxidation (LC-FAO) flux score (rate of oleate oxidation) in cultured skin fibroblasts in relation to the clinical outcome. Based on these results a dietary strategy is proposed. RESULTS: Sixteen individuals with VLCADD were included. One had an LC-FAO flux score >90%, was not on a restricted diet and is asymptomatic to date. Four patients had an LC-FAO flux score <10%, and significant VLCADD related symptoms despite the use of strict diets including LCT restriction, MCT supplementation and nocturnal gastric drip feeding. Patients with an LC-FAO flux score between 10 and 90% (n = 11) showed a more heterogeneous phenotype. CONCLUSIONS: This study shows that a strict diet cannot prevent poor clinical outcome in severely affected patients and that the LC-FAO flux is a good predictor of clinical outcome in individuals with VLCADD identified before its introduction in NBS. Hereby, we propose an individualized dietary strategy based on the LC-FAO flux score.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Acyl-CoA Dehydrogenase/deficiency , Congenital Bone Marrow Failure Syndromes/drug therapy , Lipid Metabolism, Inborn Errors/drug therapy , Mitochondrial Diseases/drug therapy , Muscular Diseases/drug therapy , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Congenital Bone Marrow Failure Syndromes/metabolism , Diet , Fatty Acids/administration & dosage , Female , Humans , Infant, Newborn , Lipid Metabolism, Inborn Errors/metabolism , Male , Mitochondrial Diseases/metabolism , Muscular Diseases/metabolism , Neonatal Screening/methods , Phenotype , Triglycerides/administration & dosage
9.
Biol Blood Marrow Transplant ; 21(6): 1106-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25708213

ABSTRACT

Allogeneic hematopoietic cell transplantation (HCT) is the only treatment able to prevent progressive neurodegenerative disease in a selected group of mucopolysaccharidosis (MPS) disorders. However, its use was historically limited by the high risk of graft failure and transplantation-related morbidity and mortality. Therefore, since 2005 new international HCT guidelines for MPS disorders were proposed. The survival and graft outcomes of MPS patients receiving HCT according to these guidelines in 2 European centers of expertise were evaluated. Two consecutive conditioning regimens were used, busulfan/cyclophosphamide or fludarabine/busulfan-based, both with exposure-targeted i.v. busulfan. A noncarrier matched sibling donor (MSD), matched unrelated cord blood (UCB), or matched unrelated donor (MUD) were considered to be preferred donors. If not available, a mismatched UCB donor was used. Participants were 62 MPS patients (56 MPS type I-Hurler, 2 MPS type II, 2 MPS type III, and 2 MPS type VI) receiving HCT at median age 13.5 months (range, 3 to 44). Forty-one patients received a UCB donor, 17 MSD, and 4 MUD. High overall survival (95.2%) and event-free survival (90.3%) were achieved with only low toxicity: 13.3% acute graft-versus-host disease aGVHD) grades II to IV and 14.8% chronic GVHD (1.9% extensive). A mismatched donor predicted for lower event-free survival (P = .04). A higher age at HCT was a predictor for both aGVHD (P = .001) and chronic GVHD (P = .01). The use of a mismatched donor was a predictor for aGVHD (P = .01). Higher rates of full-donor chimerism were achieved in successfully transplanted UCB recipients compared with MSD/MUD (P = .002). If complying with the international HCT guidelines, HCT in MPS patients results in high safety and efficacy. This allows extension of HCT to more attenuated MPS types. Because a younger age at HCT is associated with reduction of HCT-related toxicity, newborn screening may further increase safety.


Subject(s)
Cord Blood Stem Cell Transplantation , Hematopoietic Stem Cell Transplantation , Mucopolysaccharidoses/therapy , Myeloablative Agonists/therapeutic use , Neurodegenerative Diseases/prevention & control , Transplantation Conditioning/methods , Acute Disease , Busulfan/therapeutic use , Child , Child, Preschool , Chronic Disease , Cyclophosphamide/therapeutic use , Female , Follow-Up Studies , Graft vs Host Disease/immunology , Graft vs Host Disease/mortality , Graft vs Host Disease/pathology , Humans , Infant , Infant, Newborn , Male , Mucopolysaccharidoses/immunology , Mucopolysaccharidoses/mortality , Mucopolysaccharidoses/pathology , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/pathology , Practice Guidelines as Topic , Prognosis , Recurrence , Siblings , Survival Analysis , Transplantation, Homologous , Unrelated Donors , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use
10.
J Inherit Metab Dis ; 34(1): 165-71, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21153445

ABSTRACT

The main debate in the treatment of Phenylketonuria (PKU) is whether adult patients need the strict phenylalanine (Phe)-restricted diet. Physicians and patients lack evidence-based guidelines to help them make well-informed choices. We have carried out the first randomised double-blind placebo-controlled trial into the effects of short-term elevation of Phe levels on neuropsychological functions and mood of adults with PKU. Nine continuously treated adults with PKU underwent two 4-week supplementation periods: one with Phe, mimicking normal dietary intake, and one with placebo in randomly allocated order via a randomisation coding list in a double-blind cross-over design. A set of neuropsychological tests (Amsterdam Neuropsychological Tasks) was administered at the end of each study period. In addition, patients and for each patient a friend or relative, completed weekly Profile of Mood States (POMS) questionnaires, evaluating the patients' mood. Phe levels were measured twice weekly. Mean plasma Phe levels were significantly higher during Phe supplementation compared with placebo (p = 0.008). Neuropsychological tests demonstrated an impairment in sustained attention during Phe supplementation (p = 0.029). Both patients and their friend or relative reported lower scores on the POMS questionnaires during Phe supplementation (p = 0.017 and p = 0.040, respectively). High plasma Phe levels have a direct negative effect on both sustained attention and on mood in adult patients with PKU. A Phe-restricted "diet for life" might be an advisable option for many.


Subject(s)
Affect/drug effects , Attention/drug effects , Phenylalanine/pharmacology , Phenylketonurias/psychology , Adult , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Female , Humans , Male , Neuropsychological Tests , Phenylalanine/blood , Phenylalanine/therapeutic use , Phenylketonurias/blood , Phenylketonurias/drug therapy , Placebos , Young Adult
11.
J Inherit Metab Dis ; 34(1): 159-64, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21110228

ABSTRACT

We report on three patients (two siblings and one unrelated) presenting in infancy with progressive muscle weakness and paralysis of the diaphragm. Metabolic studies revealed a profile of plasma acylcarnitines and urine organic acids suggestive of a mild form of the multiple acyl-CoA dehydrogenation defect (MADD, ethylmalonic/adipic acid syndrome). Subsequently, a profound flavin deficiency in spite of a normal dietary riboflavin intake was established in the plasma of all three children, suggesting a riboflavin transporter defect. Genetic analysis of these patients demonstrated mutations in the C20orf54 gene which encodes the human homolog of a rat riboflavin transporter. This gene was recently implicated in the Brown-Vialetto-Van Laere syndrome, a rare neurological disorder which may either present in infancy with neurological deterioration with hypotonia, respiratory insufficiency and early death, or later in life with deafness and progressive ponto-bulbar palsy. Supplementation of riboflavin rapidly improved the clinical symptoms as well as the biochemical abnormalities in our patients, demonstrating that high dose riboflavin is a potential treatment for the Brown-Vialetto-Van Laere syndrome as well as for the Fazio Londe syndrome which is considered to be the same disease entity without the deafness.


Subject(s)
Bulbar Palsy, Progressive/genetics , Membrane Transport Proteins/genetics , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Riboflavin/metabolism , Bulbar Palsy, Progressive/complications , Bulbar Palsy, Progressive/diagnosis , Bulbar Palsy, Progressive/therapy , Child , Diagnosis, Differential , Female , Hearing Loss, Sensorineural/complications , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/therapy , Humans , Infant , Male , Metabolism, Inborn Errors/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Siblings
12.
Pediatr Res ; 67(3): 304-8, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19952864

ABSTRACT

Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an inborn error, biochemically characterized by increased plasma butyrylcarnitine (C4-C) concentration and increased ethylmalonic acid (EMA) excretion and caused by rare mutations and/or common gene variants in the SCAD encoding gene. Although its clinical relevance is not clear, SCADD is included in most US newborn screening programs. Riboflavin, the precursor of flavin adenine dinucleotide (FAD, cofactor), might be effective for treating SCADD. We assessed the FAD status and evaluated the effects of riboflavin treatment in a prospective open-label cohort study involving 16 patients with SCADD, subdivided into mutation/mutation (mut/mut), mutation/variant (mut/var), and variant/variant (var/var) genotype groups. Blood FAD levels were normal in all patients before therapy, but significantly lower in the mut/var and var/var groups compared with the mut/mut group. Riboflavin treatment resulted in a decrease in EMA excretion in the mut/var group and in a subjective clinical improvement in four patients from this group. However, this improvement persisted after stopping treatment. These results indicate that high-dose riboflavin treatment may improve the biochemical features of SCADD, at least in patients with a mut/var genotype and low FAD levels. As our study could not demonstrate a clinically relevant effect of riboflavin, general use of riboflavin cannot be recommended.


Subject(s)
Butyryl-CoA Dehydrogenase/deficiency , Flavin-Adenine Dinucleotide/blood , Lipid Metabolism, Inborn Errors/drug therapy , Riboflavin/administration & dosage , Vitamin B Complex/administration & dosage , Adolescent , Biomarkers/blood , Biomarkers/urine , Butyryl-CoA Dehydrogenase/genetics , Carnitine/analogs & derivatives , Carnitine/blood , Child , Child, Preschool , Female , Flavin-Adenine Dinucleotide/urine , Genetic Predisposition to Disease , Humans , Infant , Lipid Metabolism, Inborn Errors/blood , Lipid Metabolism, Inborn Errors/enzymology , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/urine , Male , Malonates/urine , Mutation , Phenotype , Prospective Studies , Treatment Outcome
13.
J Pediatr ; 156(1): 121-7, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19800078

ABSTRACT

OBJECTIVE: To gain insight into the pathophysiological and clinical consequences of short-chain acyl-coenzyme A dehydrogenase deficiency (SCADD). STUDY DESIGN: A retrospective study of 15 fasting and 6 fat-loading tests in 15 Dutch patients with SCADD, divided into 3 genotype groups. Metabolic and endocrinologic measurements and the biochemical characteristics of SCADD, ethylmalonic acid (EMA), and C4-carnitine were studied. RESULTS: Three patients had development of hypoglycemia during fasting; all of these had originally presented with hypoglycemia. Metabolic and endocrinologic measurements remained normal during all tests. The EMA excretion increased in response to fasting and fat loading, and plasma C4-carnitine remained stable. Test results did not differ between the 3 genotype groups. CONCLUSIONS: The metabolic profiles of the 3 patients with development of hypoglycemia resemble idiopathic ketotic hypoglycemia. Because hypoglycemia generally requires a metabolic work-up and because SCADD is relatively prevalent, SCADD may well be diagnosed coincidently, thus being causally unrelated to the hypoglycemia. If SCADD has any other pathologic consequences, the accumulation of potentially toxic metabolites such as EMA is most likely involved. However, the results of our study indicate that there is no clear pathophysiological significance, irrespective of genotype, supporting the claim that SCADD is not suited for inclusion in newborn screening programs.


Subject(s)
Butyryl-CoA Dehydrogenase/deficiency , Metabolism, Inborn Errors/physiopathology , Adolescent , Child , Child, Preschool , Dietary Fats, Unsaturated/administration & dosage , Fasting , Female , Humans , Hypoglycemia/enzymology , Infant , Infant, Newborn , Male , Neonatal Screening , Plant Oils/administration & dosage , Retrospective Studies , Sunflower Oil
14.
Pediatr Res ; 57(6): 760-4, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15774826

ABSTRACT

Deficiency of very-long-chain acyl-CoA dehydrogenase (VLCAD) is the most common long-chain fatty acid oxidation defect and presents with heterogeneous clinical manifestations. Accumulation of long-chain acylcarnitines and deficiency of free carnitine have often been proposed to play an important role in disease pathogenesis. The VLCAD-deficient mouse exhibits similar clinical and biochemical phenotypes to those observed in humans and, therefore, represents an excellent model to study VLCAD deficiency. We measured carnitine and acylcarnitine profiles in liver, skeletal muscle (SkM), bile, and blood from VLCAD knock-out mice and controls under nonstressed and various stress conditions. Carnitine and acylcarnitines were extracted from body fluids with methanol and from tissues with acetonitrile, respectively, and were analyzed as their butyl esters using electrospray ionization tandem mass spectrometry. Fasting combined with a cold challenge for 8 h significantly induced liver long-chain acylcarnitine and free carnitine production. Acylcarnitines in SkM predominantly accumulated during exercise with a concomitant decrease of free carnitine. Changes in blood free carnitine did not correlate with carnitine homeostasis in liver and SkM. Our results demonstrate different tissue-specific long-chain acylcarnitine profiles in response to various stressors, which may be of importance with respect to the heterogeneous clinical manifestations of VLCAD deficiency in humans. Furthermore, we conclude that carnitine biosynthesis in the liver seems sufficiently active to maintain liver carnitine levels during increased demand. Our data suggest that carnitine supplementation in long-chain beta-oxidation defects may not be required, and blood carnitine concentrations do not reflect tissue carnitine homeostasis.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Carnitine/metabolism , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Animals , Bile/metabolism , Carnitine/administration & dosage , Carnitine/analogs & derivatives , Carnitine/blood , Disease Models, Animal , Homeostasis , Humans , Lipid Metabolism, Inborn Errors/blood , Lipid Metabolism, Inborn Errors/drug therapy , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/metabolism , Liver/metabolism , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL