Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194905, 2023 03.
Article in English | MEDLINE | ID: mdl-36581245

ABSTRACT

Human protein Yin Yang 1 (YY1) controls the transcription of hundreds of genes both positively and negatively through interactions with a wide range of partner proteins. Results presented here from proteolytic sensitivity, calorimetry, circular dichroism, fluorescence, NMR, size-exclusion chromatography, SELEX, and EMSA show that purified YY1 forms dimers via its disordered N-terminal region with strong zinc-ion concentration dependence. The YY1 dimer is shown to bind tandem repeats of a canonical recognition DNA sequence with high affinity, and analysis of human YY1 regulatory sites shows that many contain repeats of its recognition elements. YY1 dimerization may compete with partner protein interactions, making control by zinc ion concentration a previously unrecognized factor affecting YY1 gene regulation. Indeed, YY1 is known to be important in many pathogenic processes, including neoplasia, in which zinc ion concentrations are altered. The present results incentivize studies in vivo or in vitro that explore the role of zinc ion concentration in YY1-mediated gene expression.


Subject(s)
YY1 Transcription Factor , Zinc , Humans , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism , Zinc/metabolism , Dimerization , Gene Expression Regulation , Base Sequence
2.
Proteins ; 83(7): 1284-96, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25963536

ABSTRACT

YY1 (Yin Yang 1) is a zinc finger protein with an essential role in various biological functions via DNA- and protein-protein interactions with numerous partners. YY1 is involved in the regulation of a broad spectrum of cellular processes such as embryogenesis, proliferation, tumorigenesis, and snRNA transcription. The more than 100 reported targets of the YY1 protein suggest that it contains intrinsically disordered regions that are involved in such diverse interactions. Here, we present a study of the structural properties of human YY1 using several biochemical and biophysical techniques (fluorescence, circular dichroism, gel filtration chromatography, proteolytic susceptibility) together with various bioinformatics approaches. To facilitate our exploration of the YY1 structure, the full-length protein as well as an N-terminal fragment (residues 1-295) and the C-terminal DNA binding domain were used. We found the N-terminus to be a non-compact fragment of YY1 with little residual secondary structure and lacking a well-defined tertiary structure. The results of our study indicate that YY1 belongs to the family of intrinsically disordered proteins (IDPs), which exist natively in a partially unfolded conformation.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Protein Unfolding , YY1 Transcription Factor/chemistry , Chromatography, Gel , Circular Dichroism , Cloning, Molecular , Computational Biology/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Intrinsically Disordered Proteins/genetics , Protein Folding , Proteolysis , Trypsin/chemistry , YY1 Transcription Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL