Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS One ; 18(7): e0289214, 2023.
Article in English | MEDLINE | ID: mdl-37506070

ABSTRACT

Inclusion of additive blends is a common dietary strategy to manage post-weaning diarrhea and performance in piglets. However, there is limited mechanistic data on how these additives improve outcomes during this period. To evaluate the effects of Presan FX (MCOA) on the intestinal microbiota and metabolome, diets with or without 0.2% MCOA were compared. Pigs fed MCOA showed improved whole-body metabolism 7 days post-weaning, with decreased (P < 0.05) creatine, creatinine and ß-hydroxybutyrate. Alterations in bile-associated metabolites and cholic acid were also observed at the same time-point (P < 0.05), suggesting MCOA increased bile acid production and secretion. Increased cholic acid was accompanied by increased tryptophan metabolites including indole-3-propionic acid (IPA) in systemic circulation (P = 0.004). An accompanying tendency toward increased Lactobacillus sp. in the small intestine was observed (P = 0.05). Many lactobacilli have bile acid tolerance mechanisms and contribute to production of IPA, suggesting increased bile acid production resulted in increased abundance of lactobacilli capable of tryptophan fermentation. Tryptophan metabolism is associated with the mature pig microbiota and many tryptophan metabolites such as IPA are considered beneficial to gut barrier function. In conclusion, MCOA may help maintain tissue metabolism and aid in microbiota re-assembly through bile acid production and secretion.


Subject(s)
Butyrates , Fatty Acids , Swine , Animals , Fatty Acids/metabolism , Tryptophan/pharmacology , Lactobacillus/metabolism , Organic Chemicals , Phenols , Bile Acids and Salts , Cholic Acid , Animal Feed/analysis , Dietary Supplements/analysis
2.
Microbiome ; 11(1): 21, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737826

ABSTRACT

BACKGROUND: Vitamin B12 supplements typically contain doses that far exceed the recommended daily amount, and high exposures are generally considered safe. Competitive and syntrophic interactions for B12 exist between microbes in the gut. Yet, to what extent excessive levels contribute to the activities of the gut microbiota remains unclear. The objective of this study was to evaluate the effect of B12 on microbial ecology using a B12 supplemented mouse model with Citrobacter rodentium, a mouse-specific pathogen. Mice were fed a standard chow diet and received either water or water supplemented with B12 (cyanocobalamin: ~120 µg/day), which equates to approximately 25 mg in humans. Infection severity was determined by body weight, pathogen load, and histopathologic scoring. Host biomarkers of inflammation were assessed in the colon before and after the pathogen challenge. RESULTS: Cyanocobalamin supplementation enhanced pathogen colonization at day 1 (P < 0.05) and day 3 (P < 0.01) postinfection. The impact of B12 on gut microbial communities, although minor, was distinct and attributed to the changes in the Lachnospiraceae populations and reduced alpha diversity. Cyanocobalamin treatment disrupted the activity of the low-abundance community members of the gut microbiota. It enhanced the amount of interleukin-12 p40 subunit protein (IL12/23p40; P < 0.001) and interleukin-17a (IL-17A; P < 0.05) in the colon of naïve mice. This immune phenotype was microbe dependent, and the response varied based on the baseline microbiota. The cecal metatranscriptome revealed that excessive cyanocobalamin decreased the expression of glucose utilizing genes by C. rodentium, a metabolic attribute previously associated with pathogen virulence. CONCLUSIONS: Oral vitamin B12 supplementation promoted C. rodentium colonization in mice by altering the activities of the Lachnospiraceae populations in the gut. A lower abundance of select Lachnospiraceae species correlated to higher p40 subunit levels, while the detection of Parasutterella exacerbated inflammatory markers in the colon of naïve mice. The B12-induced change in gut ecology enhanced the ability of C. rodentium colonization by impacting key microbe-host interactions that help with pathogen exclusion. This research provides insight into how B12 impacts the gut microbiota and highlights potential consequences of disrupting microbial B12 competition/sharing through over-supplementation. Video Abstract.


Subject(s)
Citrobacter rodentium , Vitamin B 12 , Humans , Animals , Mice , Vitamin B 12/pharmacology , Host Microbial Interactions , Colon , Dietary Supplements
3.
J Anim Sci ; 100(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36205053

ABSTRACT

Inclusion of enzymes and organic acids in pig diets is an important strategy supporting decreased antibiotic usage in pork production. However, limited knowledge exists about how these additives impact intestinal microbes and their metabolites. To examine the effects of benzoic acid and enzymes on gut microbiota and metabolome, 160 pigs were assigned to one of four diets 7 days after weaning: a control diet or the addition of 0.5% benzoic acid, 0.045% dietary enzymes (phytase, ß-glucanase, xylanase, and α-amylase), or both and fed ad libitum for 21 to 22 d. Individual growth performance and group diarrhea incidence data were collected throughout the experimental period. A decrease of 20% in pen-level diarrhea incidence from days 8 to 14 in pigs-fed both benzoic acid and enzymes compared to the control diet (P = 0.047). Cecal digesta samples were collected at the end of the experimental period from 40 piglets (n = 10 per group) and evaluated for differences using 16S rRNA sequencing and two-dimensional gas chromatography and time-of-flight mass spectrometry (GCxGC-TOFMS). Analysis of cecal microbiota diversity revealed that benzoic acid altered microbiota composition (Unweighted Unifrac, P = 0.047, r2 = 0.07) and decreased α-diversity (Shannon, P = 0.041; Faith's Phylogenetic Diversity, P = 0.041). Dietary enzymes increased fiber-fermenting bacterial taxa such as Prevotellaceae. Two-step feature selection identified 17 cecal metabolites that differed among diets, including increased microbial cross-feeding product 1,2-propanediol in pigs-fed benzoic acid-containing diets. In conclusion, dietary benzoic acid and enzymes affected the gut microbiota and metabolome of weaned pigs and may support the health and resolution of postweaning diarrhea.


Feeding weaned pigs diets containing benzoic acid or supplemental enzymes for 21 d after weaning changed the gut microbiota and metabolome. Benzoic acid increased feed intake, weight gain, and the presence of 1,2-propanediol in cecal digesta, which is an important microbial cross-feeding product. Dietary enzymes altered microbiota composition, increasing the presence of fiber-fermenting microbes including Prevotellaceae. Pigs fed a combination of both benzoic acid and enzymes showed improved resolution of postweaning diarrhea. These differences demonstrate the role of these feed additives in the establishment of gut microbes and metabolic pathways for the degradation of complex dietary components in the weaned pig. This study provides new information about alterations in microbial function and community composition using microbiota sequencing and metabolomic analysis.


Subject(s)
Animal Feed , Benzoic Acid , Swine , Animals , Weaning , Animal Feed/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Diet/veterinary , Dietary Fiber/metabolism , Cecum/microbiology , Diarrhea/veterinary
4.
Biomed Pharmacother ; 144: 112314, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34634561

ABSTRACT

The consumption of a high-fat diet can cause metabolic syndrome and induces host gut microbial dysbiosis and non-alcoholic fatty liver disease (NAFLD). We evaluated the effect of polyphenol-rich jaboticaba peel and seed powder (JPSP) on the gut microbial community composition and liver health in a mouse model of NAFLD. Three-month-old C57BL/6 J male mice, received either a control (C, 10% of lipids as energy, n = 16) or high-fat (HF, 50% of lipids as energy, n = 64) diet for nine weeks. The HF mice were randomly subdivided into four groups (n = 16 in each group), three of which (HF-J5, HF-J10, and HF-J15) were supplemented with dietary JPSP for four weeks (5%, 10%, and 15%, respectively). In addition to attenuating weight gain, JPSP consumption improved dyslipidemia and insulin resistance. In a dose-dependent manner, JPSP consumption ameliorated the expression of hepatic lipogenesis genes (AMPK, SREBP-1, HGMCoA, and ABCG8). The effects on the microbial community structure were determined in all JPSP-supplemented groups; however, the HF-J10 and HF-J15 diets led to a drastic depletion in the species of numerous bacterial families (Bifidobacteriaceae, Mogibacteriaceae, Christensenellaceae, Clostridiaceae, Dehalobacteriaceae, Peptococcaceae, Peptostreptococcaceae, and Ruminococcaceae) compared to the HF diet, some of which represented a reversal of increases associated with HF. The Lachnospiraceae and Enterobacteriaceae families and the Parabacteroides, Sutterella, Allobaculum, and Akkermansia genera were enriched more in the HF-J10 and HF-J15 groups than in the HF group. In conclusion, JPSP consumption improved obesity-related metabolic profiles and had a strong impact on the microbial community structure, thereby reversing NAFLD and decreasing its severity.


Subject(s)
Bacteria/growth & development , Gastrointestinal Microbiome , Intestines/microbiology , Liver/metabolism , Myrtaceae , Non-alcoholic Fatty Liver Disease/therapy , Plant Extracts , Prebiotics , Animals , Bacteria/metabolism , Blood Glucose/metabolism , Diet, High-Fat , Disease Models, Animal , Dysbiosis , Inflammation Mediators/blood , Lipid Metabolism , Liver/pathology , Male , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/pathology , Powders
5.
Br J Nutr ; 125(1): 50-61, 2021 01 14.
Article in English | MEDLINE | ID: mdl-32792032

ABSTRACT

Dietary choline, which is converted to phosphatidylcholine (PC) in intestinal enterocytes, may benefit inflammatory bowel disease patients who typically have reduced intestinal choline and PC. The present study investigated the effect of dietary choline supplementation on colitis severity and intestinal mucosal homoeostasis using a Citrobacter rodentium-induced colitis model. C57BL/6J mice were fed three isoenergetic diets differing in choline level: choline-deficient (CD), choline-sufficient (CS) and choline-excess (CE) for 3 weeks prior to infection with C. rodentium. The effect of dietary choline levels on the gut microbiota was also characterised in the absence of infection using 16S rRNA gene amplicon sequencing. At 7 d following infection, the levels of C. rodentium in CD mice were significantly greater than that in CS or CE groups (P < 0·05). CD mice exhibited greater damage to the surface epithelium and goblet cell loss than the CS or CE mice, which was consistent with elevated pro-inflammatory cytokine and chemokine levels in the colon. In addition, CD group exhibited decreased concentrations of PC in the colon after C. rodentium infection, although the decrease was not observed in the absence of challenge. Select genera, including Allobaculum and Turicibacter, were enriched in response to dietary choline deficiency; however, there was minimal impact on the total bacterial abundance or the overall structure of the gut microbiota. Our results suggest that insufficient dietary choline intake aggravates the severity of colitis and demonstrates an essential role of choline in maintaining intestinal homoeostasis.


Subject(s)
Choline/pharmacology , Colitis/diet therapy , Diet/adverse effects , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Animals , Chemokines/metabolism , Citrobacter rodentium , Colitis/etiology , Colitis/microbiology , Colon/metabolism , Cytokines/metabolism , Disease Models, Animal , Intestinal Mucosa/microbiology , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/analysis , Severity of Illness Index
6.
J Nutr Biochem ; 67: 101-110, 2019 05.
Article in English | MEDLINE | ID: mdl-30877891

ABSTRACT

Health benefits associated with pea consumption have been attributed to the fiber and polyphenolic content concentrated within the pea seed coat. However, the amount of pea polyphenols can vary between cultivars, and it has yet to be studied whether pea polyphenols impact the intestinal microbiota. We hypothesized that pea polyphenols promote a healthy microbiome that supports intestinal integrity and pathogen colonization resistance. To investigate the effects of pea polyphenols, pea cultivars rich and poor in proanthocyanidins were supplemented in raw or acid hydrolyzed form to an isocaloric diet in mice. Acid hydrolysis increases the absorption of pea polyphenols by cleaving polymeric proanthocyanidins to their readily absorbable anthocyanidin monomers. After 3 weeks of diet, mice were challenged with Citrobacter rodentium and pathogen colonization and inflammation were assessed. Counter to our hypothesis, pea seed coat fraction supplementation, especially the non-hydrolyzed proanthocyanidin-rich fraction diet adversely increased C. rodentium pathogen load and inflammation. Ileal, cecal and colon microbial communities were notably distinct between pea seed cultivar and hydrolysis processing. The consumption of intact proanthocyanidins decreased microbial diversity indicating that proanthocyanidins have antimicrobial properties. Together our results indicate supplementation of raw pea seed coat rich in proanthocyanidins adversely affect intestinal integrity. However, acid hydrolysis processing restored community structure and colonization resistance, and the anthocyanidin-rich fractions reduced weight gain on a high fat diet. Establishing a clear understanding of the effects of pea fiber and polyphenolic form on health will help to develop research-based pea products and dietary recommendations.


Subject(s)
Enterobacteriaceae Infections/microbiology , Gastrointestinal Microbiome/drug effects , Pisum sativum/chemistry , Polyphenols/pharmacology , Animals , Anthocyanins/pharmacology , Bacterial Load , Citrobacter rodentium/pathogenicity , Diet, High-Fat/adverse effects , Dietary Supplements , Fatty Acids, Volatile/metabolism , Feces/microbiology , Female , Food-Processing Industry/methods , Gastrointestinal Microbiome/physiology , Hydrolysis , Mice, Inbred C57BL , Seeds/chemistry , Weight Gain/drug effects
7.
JPEN J Parenter Enteral Nutr ; 43(5): 668-676, 2019 07.
Article in English | MEDLINE | ID: mdl-30137679

ABSTRACT

BACKGROUND: Neonates with intestinal failure dependent on parenteral nutrition (PN) are at risk of intestinal failure-associated liver disease (IFALD). PN lipid composition relates to the risk of IFALD, but the mechanisms are poorly understood. We investigated the effects of soybean oil (SO), a mixed-lipid (ML) emulsion containing fish oil (FO), and a pure FO. We hypothesized FO-containing PN lipids would result in increased gene expression of canalicular bile acid transporters and a larger, more hydrophilic bile acid pool, predictive of increased bile flow. METHODS: Neonatal piglets were allocated to receive 1 of SO, ML, or FO throughout 14 days of PN feeding. Relative expression of genes involved in bile acid synthesis and transport were determined through quantitative polymerase chain reaction. Bile secreted from the liver was collected and measured. Bile acid composition was determined using tandem mass spectrometry. Regression analysis was used to determine predictors of bile flow. RESULTS: PN reduced bile acid secretion (P < .001). FO-containing PN lipids were associated with greater expression of bile acid and organic solute transport genes (P < .05) and greater secretion of hydrophobic bile acids (P < .001). Farnesoid X receptor (P = .01), bile salt export pump (P < .01), multidrug resistant protein 2 (P < .01), and unconjugated hyocholic acid (P < .001) independently predicted bile flow. CONCLUSIONS: PN lipid modulation altered bile acid metabolism and composition. These alterations may explain the hepatoprotective effects of FO-containing PN lipids and support their use in the prevention and treatment of IFALD.


Subject(s)
Bile Acids and Salts/metabolism , Fat Emulsions, Intravenous/administration & dosage , Fish Oils/administration & dosage , Parenteral Nutrition/methods , Soybean Oil/administration & dosage , Animals , Animals, Newborn , Models, Animal , Swine
8.
J Nutr ; 148(10): 1513-1520, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30281112

ABSTRACT

Background: Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine to phosphatidylcholine. Pemt-/-/low density lipoprotein receptor (Ldlr)-/- mice have significantly reduced plasma lipids and are protected against atherosclerosis. Recent studies have shown that choline can be metabolized by the gut flora into trimethylamine-N-oxide (TMAO), which is an emerging risk factor for atherosclerosis. Objective: The objective of this study was to determine whether ectopic hepatic PEMT expression or choline supplementation would promote atherosclerosis in Pemt-/-/Ldlr-/- mice. Methods: Male 8- to 10-wk-old Pemt+/+/Ldlr-/- (SKO) and Pemt-/-/Ldlr-/- (DKO) mice were injected with an adeno-associated virus (AAV) expressing green fluorescent protein (GFP) or human PEMT and fed a Western diet (40% of calories from fat, 0.5% cholesterol) for 8 wk. In a separate experiment, 8- to 10-wk-old SKO and half of the DKO male mice were fed a Western diet with normal (3 g/kg) choline for 12 wk. The remaining DKO mice [choline-supplemented (CS) DKO] were fed a CS Western diet (10 g choline/kg). Plasma lipid concentrations, choline metabolites, and aortic atherosclerosis were measured. Results: Plasma cholesterol, plasma TMAO, and aortic atherosclerosis were reduced by 60%, 40%, and 80%, respectively, in DKO mice compared with SKO mice. AAV-PEMT administration increased plasma cholesterol and TMAO by 30% and 40%, respectively, in DKO mice compared with AAV-GFP-treated DKO mice. Furthermore, AAV-PEMT-injected DKO mice developed atherosclerotic lesions similar to SKO mice. In the second study, there was no difference in atherosclerosis or plasma cholesterol between DKO and CS-DKO mice. However, plasma TMAO concentrations were increased 2.5-fold in CS-DKO mice compared with DKO mice. Conclusions: Reintroducing hepatic PEMT reversed the atheroprotective phenotype of DKO mice. Choline supplementation did not increase atherosclerosis or plasma cholesterol in DKO mice. Our data suggest that plasma TMAO does not induce atherosclerosis when plasma cholesterol is low. Furthermore, this is the first report to our knowledge that suggests that de novo choline synthesis alters TMAO status.


Subject(s)
Atherosclerosis/metabolism , Cholesterol/blood , Choline/pharmacology , Liver/metabolism , Methylamines/blood , Phosphatidylethanolamine N-Methyltransferase/metabolism , Receptors, LDL/metabolism , Animals , Aorta , Atherosclerosis/etiology , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Cholesterol, Dietary/administration & dosage , Choline/metabolism , Diet, Western , Dietary Supplements , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylethanolamine N-Methyltransferase/pharmacology , Phosphatidylethanolamines/metabolism
9.
Nutrients ; 9(11)2017 Nov 12.
Article in English | MEDLINE | ID: mdl-29137145

ABSTRACT

Several studies have demonstrated the beneficial impact of dried peas and their components on glucose tolerance; however, the role of gut microbiota as a potential mediator is not fully examined. In this study, we investigated the effect of dietary supplementation with raw and cooked pea seed coats (PSC) on glucose tolerance, microbial composition of the gut, select markers of intestinal barrier function, and short chain fatty acid profile in glucose intolerant rats. Male Sprague Dawley rats were fed high fat diet (HFD) for six weeks to induce glucose intolerance, followed by four weeks of feeding PSC-supplemented diets. Cooked PSC improved glucose tolerance by approximately 30% (p < 0.05), and raw and cooked PSC diets reduced insulin response by 53% and 56% respectively (p < 0.05 and p < 0.01), compared to HFD (containing cellulose as the source of dietary fiber). 16S rRNA gene sequencing on fecal samples showed a significant shift in the overall microbial composition of PSC groups when compared to HFD and low fat diet (LFD) controls. At the family level, PSC increased the abundance of Lachnospiraceae and Prevotellaceae (p < 0.001), and decreased Porphyromonadaceae (p < 0.01) compared with HFD. This was accompanied by increased mRNA expression of mucin genes Muc1, Muc2, and Muc4 in ileal epithelium (p < 0.05). Serum levels of acetate and propionate increased with raw PSC diet (p < 0.01). These results indicate that supplementation of HFD with PSC fractions can improve glycemia and may have a protective role against HFD-induced alterations in gut microbiota and mucus layer.


Subject(s)
Bacteria/growth & development , Blood Glucose/metabolism , Dietary Fiber/administration & dosage , Dietary Supplements , Fatty Acids, Volatile/blood , Gastrointestinal Microbiome , Glucose Intolerance/diet therapy , Ileum/metabolism , Ileum/microbiology , Mucins/metabolism , Pisum sativum , Animals , Bacteria/classification , Bacteria/genetics , Biomarkers/blood , Diet, High-Fat , Disease Models, Animal , Glucose Intolerance/blood , Glucose Intolerance/genetics , Glucose Intolerance/microbiology , Insulin/blood , Male , Mucins/genetics , Occludin/metabolism , Rats, Sprague-Dawley , Time Factors , Toll-Like Receptors/metabolism , Zonula Occludens-1 Protein/metabolism
10.
JPEN J Parenter Enteral Nutr ; 41(8): 1301-1309, 2017 11.
Article in English | MEDLINE | ID: mdl-27495286

ABSTRACT

BACKGROUND: Total parenteral nutrition (TPN) is a cause of intestinal microbial dysbiosis and impaired gut barrier function. This may contribute to life-threatening parenteral nutrition-associated liver disease and sepsis in infants. We compared the effects of a lipid emulsion containing long-chain ω-3 polyunsaturated fatty acids (PUFAs; SMOFlipid) and a predominantly ω-6 PUFA emulsion (Intralipid) on microbial composition and host response at the mucosal surface. MATERIALS AND METHODS: Neonatal piglets were provided isocaloric, isonitrogenous TPN for 14 days versus sow-fed (SF) controls. Equivalent lipid doses (10 g/kg/d) were given of either SMOFlipid (ML; n = 10) or Intralipid (SO; n = 9). Ileal segments and mucosal scrapings were used to characterize microbial composition by 16S rRNA gene sequencing and quantitative gene expression of tight junction proteins, mucins, antimicrobial peptides, and inflammatory cytokines. RESULTS: The microbial composition of TPN piglets differed from SF, while ML and SO differed from each other (analysis of molecular variance; P < .05); ML piglets were more similar to SF, as indicated by UniFrac distance ( P < .05). SO piglets showed a specific and dramatic increase in Parabacteroides ( P < .05), while ML showed an increase in Enterobacteriaceae ( P < .05). Gene expression of mucin, claudin 1, ß-defensin 2, and interleukin 8 were higher in TPN; overall increases were significantly less in ML versus SO ( P < .05). CONCLUSION: The formulation of parenteral lipid is associated with differences in the gut microbiota and host response of TPN-fed neonatal piglets. Inclusion of ω-3 long-chain PUFAs appears to improve host-microbial interactions at the mucosal surface, although mechanisms are yet to be defined.


Subject(s)
Dysbiosis/diagnosis , Fat Emulsions, Intravenous/administration & dosage , Gastrointestinal Microbiome , Parenteral Nutrition Solutions/chemistry , Animals , Animals, Newborn , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Cytokines/genetics , Cytokines/metabolism , DNA, Bacterial/isolation & purification , Fat Emulsions, Intravenous/chemistry , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-6/administration & dosage , Fatty Acids, Omega-6/analysis , Host-Pathogen Interactions , Male , Mucins/genetics , Mucins/metabolism , Parenteral Nutrition, Total , RNA, Ribosomal, 16S/isolation & purification , Sequence Analysis, DNA , Swine , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism
11.
Sci Rep ; 5: 9253, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25787310

ABSTRACT

Plant extracts, or phytonutrients, are used in traditional medicine practices as supplements to enhance the immune system and gain resistance to various infectious diseases and are used in animal production as health promoting feed additives. To date, there are no studies that have assessed their mechanism of action and ability to alter mucosal immune responses in the intestine. We characterized the immunomodulatory function of six phytonutrients: anethol, carvacrol, cinnamaldehyde, eugenol, capsicum oleoresin and garlic extract. Mice were treated with each phytonutrient to assess changes to colonic gene expression and mucus production. All six phytonutrients showed variable changes in expression of innate immune genes in the colon. However only eugenol stimulated production of the inner mucus layer, a key mucosal barrier to microbes. The mechanism by which eugenol causes mucus layer thickening likely involves microbial stimulation as analysis of the intestinal microbiota composition showed eugenol treatment led to an increase in abundance of specific families within the Clostridiales order. Further, eugenol treatment confers colonization resistance to the enteric pathogen Citrobacter rodentium. These results suggest that eugenol acts to strengthen the mucosal barrier by increasing the thickness of the inner mucus layer, which protects against invading pathogens and disease.


Subject(s)
Citrobacter rodentium/drug effects , Enterobacteriaceae Infections/prevention & control , Intestinal Mucosa/drug effects , Phytochemicals/pharmacology , Animals , Citrobacter rodentium/pathogenicity , Clostridiales/genetics , Clostridiales/growth & development , Clostridiales/isolation & purification , Colon/microbiology , Dietary Supplements , Eugenol/administration & dosage , Eugenol/chemistry , Eugenol/pharmacology , Immunity, Mucosal/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Medicine, Traditional , Mice , Microbiota , Peptostreptococcus/genetics , Peptostreptococcus/growth & development , Peptostreptococcus/isolation & purification , Phytochemicals/administration & dosage , Phytochemicals/chemistry , RNA, Ribosomal, 16S/analysis
12.
PLoS One ; 6(10): e26988, 2011.
Article in English | MEDLINE | ID: mdl-22046427

ABSTRACT

Host resistance to bacterial infections is thought to be dictated by host genetic factors. Infections by the natural murine enteric pathogen Citrobacter rodentium (used as a model of human enteropathogenic and enterohaemorrhagic E. coli infections) vary between mice strains, from mild self-resolving colonization in NIH Swiss mice to lethality in C3H/HeJ mice. However, no clear genetic component had been shown to be responsible for the differences observed with C. rodentium infections. Because the intestinal microbiota is important in regulating resistance to infection, and microbial composition is dependent on host genotype, it was tested whether variations in microbial composition between mouse strains contributed to differences in "host" susceptibility by transferring the microbiota of resistant mice to lethally susceptible mice prior to infection. Successful transfer of the microbiota from resistant to susceptible mice resulted in delayed pathogen colonization and mortality. Delayed mortality was associated with increased IL-22 mediated innate defense including antimicrobial peptides Reg3γ and Reg3ß, and immunono-neutralization of IL-22 abrogated the beneficial effect of microbiota transfer. Conversely, depletion of the native microbiota in resistant mice by antibiotics and transfer of the susceptible mouse microbiota resulted in reduced innate defenses and greater pathology upon infection. This work demonstrates the importance of the microbiota and how it regulates mucosal immunity, providing an important factor in susceptibility to enteric infection. Transfer of resistance through microbial transplantation (bacteriotherapy) provides additional mechanisms to alter "host" resistance, and a novel means to alter enteric infection and to study host-pathogen interactions.


Subject(s)
Biological Therapy/methods , Host-Pathogen Interactions/immunology , Immunity , Metagenome/immunology , Transplantation , Animals , Immunity, Mucosal , Intestines/microbiology , Mice , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL