Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Life Sci ; 282: 119816, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34273376

ABSTRACT

BACKGROUND: Combined exercise training (CET) has been associated with positive responses in the clinical status of patients with heart failure (HF). Other nonpharmacological tools, such as amino acid supplementation, may further enhance its adaptation. The aim was to test whether CET associated with supplementing carnosine precursors could present better responses in the functional capacity and biochemical variables of rats with HF. METHODS: Twenty-one male Wistar rats were subjected to myocardial infarction and allocated to three groups: sedentary (SED, n = 7), CET supplemented with placebo (CETP, n = 7), and CET with HF supplemented with ß-alanine and L-histidine (CETS, n = 7). The trained animals were submitted to a strength protocol three times per week. Aerobic training was conducted twice per week. The supplemented group received ß-alanine and L-histidine orally (250 mg/kg per day). RESULTS: Maximum oxygen uptake, running distance, time to exhaustion and maximum strength were higher in the CET-P group than that in the SED group and even higher in the CET-S group than that in the CET-P group (P < 0.01). CET-S showed lower oxidative stress and inflammation markers and higher heat shock protein 72 kDa content and mRNA expression for calcium transporters in the skeletal muscle compared to SED. CONCLUSION: CET together with ß-alanine and L-histidine supplementation in rats with HF can elicit adaptations in both maximum oxygen uptake, running distance, time to exhaustion, maximum strength, oxidative stress, inflammation and mRNA expression. Carnosine may influence beneficial adjustments in the cell stress response in the skeletal muscle and upregulate the mRNA expression of calcium transporters.


Subject(s)
Carnosine/pharmacology , Heart Failure , Oxygen/blood , Physical Conditioning, Animal , Animals , Disease Models, Animal , Heart Failure/blood , Heart Failure/drug therapy , Heart Failure/physiopathology , Histidine/pharmacology , Male , Rats , Rats, Wistar , beta-Alanine/pharmacology
2.
Invest New Drugs ; 38(3): 662-674, 2020 06.
Article in English | MEDLINE | ID: mdl-31264068

ABSTRACT

The aim of this study was to further evaluate the antitumoral effect of (PhSe)2-loaded polymeric nanocapsules (NC (PhSe)2) against a resistant melanoma cell line (SK-Mel-103) and develop a xanthan gum-based hydrogel intending the NC (PhSe)2 cutaneous application. For the in vitro evaluation, cells were incubated with free (PhSe)2 or NC (PhSe)2 (0.7-200 µM) and after 48 h the MTT assay, propidium iodide uptake (necrosis marker) and nitrite levels were assessed. The hydrogels were developed by thickening of the NC (PhSe)2 suspension or (PhSe)2 solution with xanthan gum and characterized in terms of average diameter, polydispersity index, pH, drug content, spreadability, rheological profiles and in vitro permeation in human skin. The results showed that NC (PhSe)2 provided a superior antitumoral effect in comparison to free (PhSe)2 (IC50 value of 47.43 µM and 65.05 µM, respectively) and increased the nitrite content. Both compound forms induced propidium iodide uptake, suggesting a necrosis-related pathway could be involved in the cytotoxic action of (PhSe)2. All hydrogels showed pH values around 7, drug content close to the theoretical values (5 mg/g) and mean diameter in the nanometric range. Besides, formulations were classified as non-Newtonian flow with pseudoplastic behavior and suitable spreadability factor. Skin permeation studies revealed that the compound content was higher for the nano-based hydrogel in the dermis layer, demonstrating its superior permeation, achieved by the compound encapsulation. It is the first report on an adequate formulation development for cutaneous application of NC (PhSe)2 that could be used as an adjuvant treatment in melanoma therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Benzene Derivatives/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Melanoma, Experimental/drug therapy , Nanocapsules/chemistry , Organoselenium Compounds/pharmacology , Polysaccharides, Bacterial/chemistry , Animals , Antineoplastic Agents/chemistry , Benzene Derivatives/chemistry , Cell Line , Humans , Mice , Organoselenium Compounds/chemistry , Permeability/drug effects , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL