Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Med Sci Monit ; 20: 644-53, 2014 Apr 19.
Article in English | MEDLINE | ID: mdl-24747831

ABSTRACT

BACKGROUND: The medicinal leech is considered as a complementary and appropriate model to study immune functions in the central nervous system (CNS). In a context in which an injured leech's CNS can naturally restore normal synaptic connections, the accumulation of microglia (immune cells of the CNS that are exclusively resident in leeches) has been shown to be essential at the lesion to engage the axonal sprouting. HmC1q (Hm for Hirudo medicinalis) possesses chemotactic properties that are important in the microglial cell recruitment by recognizing at least a C1q binding protein (HmC1qBP alias gC1qR). MATERIAL AND METHODS: Recombinant forms of C1q were used in affinity purification and in vitro chemotaxis assays. Anti-calreticulin antibodies were used to neutralize C1q-mediated chemotaxis and locate the production of calreticulin in leech CNS. RESULTS: A newly characterized leech calreticulin (HmCalR) has been shown to interact with C1q and participate to the HmC1q-dependent microglia accumulation. HmCalR, which has been detected in only some microglial cells, is consequently a second binding protein for HmC1q, allowing the chemoattraction of resident microglia in the nerve repair process. CONCLUSIONS: These data give new insight into calreticulin/C1q interaction in an immune function of neuroprotection, suggesting another molecular target to use in investigation of microglia reactivity in a model of CNS injury.


Subject(s)
Calreticulin/metabolism , Central Nervous System/injuries , Central Nervous System/pathology , Complement C1q/metabolism , Hirudo medicinalis/metabolism , Microglia/metabolism , Amino Acid Sequence , Animals , Base Sequence , Biotinylation , Calreticulin/chemistry , Calreticulin/genetics , Central Nervous System/metabolism , Chemotaxis , Humans , Microglia/pathology , Molecular Sequence Data , Phylogeny , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Solubility
2.
PLoS One ; 6(4): e18359, 2011 Apr 22.
Article in English | MEDLINE | ID: mdl-21526169

ABSTRACT

BACKGROUND: The adult medicinal leech central nervous system (CNS) is capable of regenerating specific synaptic circuitry after a mechanical lesion, displaying evidence of anatomical repair within a few days and functional recovery within a few weeks. In the present work, spatiotemporal changes in molecular distributions during this phenomenon are explored. Moreover, the hypothesis that neural regeneration involves some molecular factors initially employed during embryonic neural development is tested. RESULTS: Imaging mass spectrometry coupled to peptidomic and lipidomic methodologies allowed the selection of molecules whose spatiotemporal pattern of expression was of potential interest. The identification of peptides was aided by comparing MS/MS spectra obtained for the peptidome extracted from embryonic and adult tissues to leech transcriptome and genome databases. Through the parallel use of a classical lipidomic approach and secondary ion mass spectrometry, specific lipids, including cannabinoids, gangliosides and several other types, were detected in adult ganglia following mechanical damage to connected nerves. These observations motivated a search for possible effects of cannabinoids on neurite outgrowth. Exposing nervous tissues to Transient Receptor Potential Vanilloid (TRPV) receptor agonists resulted in enhanced neurite outgrowth from a cut nerve, while exposure to antagonists blocked such outgrowth. CONCLUSION: The experiments on the regenerating adult leech CNS reported here provide direct evidence of increased titers of proteins that are thought to play important roles in early stages of neural development. Our data further suggest that endocannabinoids also play key roles in CNS regeneration, mediated through the activation of leech TRPVs, as a thorough search of leech genome databases failed to reveal any leech orthologs of the mammalian cannabinoid receptors but revealed putative TRPVs. In sum, our observations identify a number of lipids and proteins that may contribute to different aspects of the complex phenomenon of leech nerve regeneration, establishing an important base for future functional assays.


Subject(s)
Hirudo medicinalis/metabolism , Lipid Metabolism , Nerve Regeneration/physiology , Nervous System/metabolism , Peptides/metabolism , Amino Acid Sequence , Animals , Axotomy , Cannabinoids/metabolism , Chromatography, High Pressure Liquid , Cluster Analysis , Embryo, Nonmammalian/metabolism , Ganglia, Invertebrate/metabolism , Ganglia, Invertebrate/pathology , Hirudo medicinalis/embryology , Molecular Sequence Data , Nervous System/pathology , Peptides/chemistry , Phylogeny , Proteome/metabolism , Receptors, Cannabinoid/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spinal Cord/metabolism , Spinal Cord/pathology , Stress, Mechanical , TRPV Cation Channels/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL