Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Addict Biol ; 27(2): e13113, 2022 03.
Article in English | MEDLINE | ID: mdl-34808703

ABSTRACT

Heavy cannabis use (HCU) is frequently associated with a plethora of cognitive, psychopathological and sensorimotor phenomena. Although HCU is frequent, specific patterns of abnormal brain structure and function underlying HCU in individuals presenting without cannabis-use disorder or other current and life-time major mental disorders are unclear at present. This multimodal magnetic resonance imaging (MRI) study examined resting-state functional MRI (rs-fMRI) and structural MRI (sMRI) data from 24 persons with HCU and 16 controls. Parallel independent component analysis (p-ICA) was used to examine covarying components among grey matter volume (GMV) maps computed from sMRI and intrinsic neural activity (INA), as derived from amplitude of low-frequency fluctuations (ALFF) maps computed from rs-fMRI data. Further, we used JuSpace toolbox for cross-modal correlations between MRI-based modalities with nuclear imaging derived estimates, to examine specific neurotransmitter system changes underlying HCU. We identified two transmodal components, which significantly differed between the HCU and controls (GMV: p = 0.01, ALFF p = 0.03, respectively). The GMV component comprised predominantly cerebello-temporo-thalamic regions, whereas the INA component included fronto-parietal regions. Across HCU, loading parameters of both components were significantly associated with distinct HCU behavior. Finally, significant associations between GMV and the serotonergic system as well as between INA and the serotonergic, dopaminergic and µ-opioid receptor system were detected. This study provides novel multimodal neuromechanistic insights into HCU suggesting co-altered structure/function-interactions in neural systems subserving cognitive and sensorimotor functions.


Subject(s)
Cannabis , Brain , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Thalamus
2.
Addict Behav ; 82: 50-56, 2018 07.
Article in English | MEDLINE | ID: mdl-29494858

ABSTRACT

Mindfulness-based interventions (MBI) are increasingly used in the treatment of patients with mental disorders, in particular in individuals presenting with affective disorders or in patients exhibiting abnormal levels of impulsive behavior. MBI have been also offered to patients with substance use disorders, where such treatment options may yield considerable clinical effects. Neural effects associated with MBI have been increasingly acknowledged, but is unknown whether MBI exert specific effects on brain structure in patients with substance use disorders. In this study, we investigated 19 inpatients with opioid dependence receiving treatment-as-usual (TAU, n = 9) or additional MBI (n = 10). Structural magnetic resonance imaging data were acquired before and after four weeks of treatment. Source-based morphometry was used to investigate modulation of structural networks after treatment. Both treatment modalities led to significant clinical improvement. Patients receiving MBI showed a significant change in distress tolerance levels. An increase in bilateral striatal/insular and prefrontal/cingulate network strength was found in patients receiving MBI compared to individuals receiving TAU. Prefrontal/cingulate cortical network strength was associated with impulsivity levels. These findings suggest that MBI can have a recognizable role in treatment of substance use disorders and that neural effects of MBI may be captured in terms of frontostriatal structural network change.


Subject(s)
Brain/diagnostic imaging , Cognitive Behavioral Therapy/methods , Magnetic Resonance Imaging , Mindfulness/methods , Nerve Net/physiopathology , Opioid-Related Disorders/rehabilitation , Adult , Brain/physiopathology , Brain Mapping , Female , Humans , Male , Opioid-Related Disorders/diagnostic imaging , Opioid-Related Disorders/physiopathology , Opioid-Related Disorders/psychology
SELECTION OF CITATIONS
SEARCH DETAIL