Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38593271

ABSTRACT

Conventional transistors have long emphasized signal modulation and amplification, often sidelining polarity considerations. However, the recent emergence of negative differential transconductance, characterized by a drain current decline during gate voltage sweeping, has illuminated an unconventional path in transistor technology. This phenomenon promises to simplify the implementation of ternary logic circuits and enhance energy efficiency, especially in multivalued logic applications. Our research has culminated in the development of a sophisticated mixed transconductance transistor (M-T device) founded on a precise Te and IGZO heterojunction. The M-T device exhibits a sequence of intriguing phenomena, zero differential transconductance (ZDT), positive differential transconductance (PDT), and negative differential transconductance (NDT) contingent on applied gate voltage. We clarify its operation using a three-segment equivalent circuit model and validate its viability with IGZO TFT, Te TFT, and Te/IGZO TFT components. In a concluding demonstration, the M-T device interconnected with Te TFT achieves a ternary inverter with an intermediate logic state. Remarkably, this configuration seamlessly transitions into a binary inverter when it is exposed to light.

2.
Membranes (Basel) ; 11(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34940431

ABSTRACT

Beyond conventional silicon, emerging semiconductor materials have been actively investigated for the development of integrated circuits (ICs). Considerable effort has been put into implementing complementary circuits using non-silicon emerging materials, such as organic semiconductors, carbon nanotubes, metal oxides, transition metal dichalcogenides, and perovskites. Whereas shortcomings of each candidate semiconductor limit the development of complementary ICs, an approach of hybrid materials is considered as a new solution to the complementary integration process. This article revisits recent advances in hybrid-material combination-based complementary circuits. This review summarizes the strong and weak points of the respective candidates, focusing on their complementary circuit integrations. We also discuss the opportunities and challenges presented by the prospect of hybrid integration.

SELECTION OF CITATIONS
SEARCH DETAIL