Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Eur Respir J ; 50(3)2017 09.
Article in English | MEDLINE | ID: mdl-28931663

ABSTRACT

Cough is the most common reason to visit a primary care physician, yet it remains an unmet medical need. Fatty acid amide hydrolase (FAAH) is an enzyme that breaks down endocannabinoids, and inhibition of FAAH produces analgesic and anti-inflammatory effects. Cannabinoids inhibit vagal sensory nerve activation and the cough reflex, so it was hypothesised that FAAH inhibition would produce antitussive activity via elevation of endocannabinoids.Primary vagal ganglia neurons, tissue bioassay, in vivo electrophysiology and a conscious guinea pig cough model were utilised to investigate a role for fatty acid amides in modulating sensory nerve activation in vagal afferents.FAAH inhibition produced antitussive activity in guinea pigs with concomitant plasma elevation of the fatty acid amides N-arachidonoylethanolamide (anandamide), palmitoylethanolamide, N-oleoylethanolamide and linoleoylethanolamide. Palmitoylethanolamide inhibited tussive stimulus-induced activation of guinea pig airway innervating vagal ganglia neurons, depolarisation of guinea pig and human vagus, and firing of C-fibre afferents. These effects were mediated via a cannabinoid CB2/Gi/o-coupled pathway and activation of protein phosphatase 2A, resulting in increased calcium sensitivity of calcium-activated potassium channels.These findings identify FAAH inhibition as a target for the development of novel, antitussive agents without the undesirable side-effects of direct cannabinoid receptor agonists.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Antitussive Agents/therapeutic use , Capsaicin/pharmacology , Cough/drug therapy , Enzyme Inhibitors/therapeutic use , Spiro Compounds/pharmacology , Adult , Aged , Animals , Aza Compounds/pharmacology , Cannabinoid Receptor Modulators/pharmacology , Cannabinoids/antagonists & inhibitors , Female , Guinea Pigs , Humans , Male , Middle Aged , Receptor, Cannabinoid, CB2/drug effects , Vagus Nerve/drug effects
2.
Am J Respir Crit Care Med ; 196(10): 1255-1263, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28650204

ABSTRACT

RATIONALE: Heightened cough responses to inhaled capsaicin, a transient receptor potential vanilloid 1 (TRPV1) agonist, are characteristic of patients with chronic cough. However, previously, a TRPV1 antagonist (SB-705498) failed to improve spontaneous cough frequency in these patients, despite small reductions in capsaicin-evoked cough. OBJECTIVES: XEN-D0501 (a potent TRPV1 antagonist) was compared with SB-705498 in preclinical studies to establish whether an improved efficacy profile would support a further clinical trial of XEN-D0501 in refractory chronic cough. METHODS: XEN-D0501 and SB-705498 were profiled against capsaicin in a sensory nerve activation assay and in vivo potency established against capsaicin-induced cough in the guinea pig. Twenty patients with refractory chronic cough participated in a double-blind, randomized, placebo-controlled crossover study evaluating the effect of 14 days of XEN-D0501 (oral, 4 mg twice daily) versus placebo on awake cough frequency (primary outcome), capsaicin-evoked cough, and patient-reported outcomes. MEASUREMENTS AND MAIN RESULTS: XEN-D0501 was more efficacious and 1,000-fold more potent than SB-705498 at inhibiting capsaicin-induced depolarization of guinea pig and human isolated vagus nerve. In vivo XEN-D0501 completely inhibited capsaicin-induced cough, whereas 100 times more SB-705498 was required to achieve the same effect. In patients, XEN-D0501 substantially reduced maximal cough responses to capsaicin (mean change from baseline, XEN-D0501, -19.3 ± 16.4) coughs; placebo, -1.8 ± 5.8 coughs; P < 0.0001), but not spontaneous awake cough frequency (mean change from baseline, XEN-D0501, 6.7 ± 16.9 coughs/h; placebo, 0.4 ± 13.7 coughs/h; P = 0.41). CONCLUSIONS: XEN-D0501 demonstrated superior efficacy and potency in preclinical and clinical capsaicin challenge studies; despite this improved pharmacodynamic profile, spontaneous cough frequency did not improve, ruling out TRPV1 as an effective therapeutic target for refractory cough. Clinical trial registered with www.clinicaltrialsregister.eu (2014-000306-36).


Subject(s)
Antitussive Agents/therapeutic use , Capsaicin/therapeutic use , Chronic Disease/drug therapy , Cough/drug therapy , TRPV Cation Channels/agonists , TRPV Cation Channels/therapeutic use , Adult , Aged , Aged, 80 and over , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Middle Aged
3.
J Allergy Clin Immunol ; 133(3): 679-87.e9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24506933

ABSTRACT

BACKGROUND: Recent studies have suggested that the long-acting muscarinic receptor antagonist tiotropium, a drug widely prescribed for its bronchodilator activity in patients with chronic obstructive pulmonary disease and asthma, improves symptoms and attenuates cough in preclinical and clinical tussive agent challenge studies. The mechanism by which tiotropium modifies tussive responses is not clear, but an inhibition of vagal tone and a consequent reduction in mucus production from submucosal glands and bronchodilation have been proposed. OBJECTIVE: The aim of this study was to investigate whether tiotropium can directly modulate airway sensory nerve activity and thereby the cough reflex. METHODS: We used a conscious cough model in guinea pigs, isolated vagal sensory nerve and isolated airway neuron tissue- and cell-based assays, and in vivo single-fiber recording electrophysiologic techniques. RESULTS: Inhaled tiotropium blocked cough and single C-fiber firing in the guinea pig to the transient receptor potential (TRP) V1 agonist capsaicin, a clinically relevant tussive stimulant. Tiotropium and ipratropium, a structurally similar muscarinic antagonist, inhibited capsaicin responses in isolated guinea pig vagal tissue, but glycopyrrolate and atropine did not. Tiotropium failed to modulate other TRP channel-mediated responses. Complementary data were generated in airway-specific primary ganglion neurons, demonstrating that tiotropium inhibited capsaicin-induced, but not TRPA1-induced, calcium movement and voltage changes. CONCLUSION: For the first time, we have shown that tiotropium inhibits neuronal TRPV1-mediated effects through a mechanism unrelated to its anticholinergic activity. We speculate that some of the clinical benefit associated with taking tiotropium (eg, in symptom control) could be explained through this proposed mechanism of action.


Subject(s)
Bronchi/drug effects , Muscarinic Antagonists/pharmacology , Scopolamine Derivatives/pharmacology , Sensory Receptor Cells/physiology , TRPV Cation Channels/antagonists & inhibitors , Animals , Bronchi/innervation , Calcium/metabolism , Capsaicin/pharmacology , Cough/physiopathology , Cricetinae , HEK293 Cells , Humans , Nerve Fibers, Unmyelinated/drug effects , Nerve Fibers, Unmyelinated/physiology , Tiotropium Bromide , Vagus Nerve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL