Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Arch Microbiol ; 204(7): 414, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35737124

ABSTRACT

The objectives of this study were to evaluate the contribution of urea on the nutritional quality and microbial community of ensiled alfalfa (Medicago sativa L.). Alfalfa silage was control group without urea (AL), supplementation with 0.5% urea (AU1), or supplementation with 1% urea (AU2). The silage tanks were opened and sampled after silage at 0, 15, 30, and 60 d. Results showed that AU2 had higher pH, ratio of (ammonia-N)/(total nitrogen) (NH3-N/TN) and crude protein (CP) content than those in AL and AU1, while AU1 had higher acid detergent fiber (ADF) than that in AL and AU2 after 15 d silage. Richness and diversity indices of microbial communities in silage were no significant differences among AL, AU1 and AU2 group. Proteobacteria (58.23%) and Firmicutes (40.95%) were the predominant phylum in three groups during the silage process. The percent of community abundances on genera level of Enterobacteriaceae (37.61%) and Klebsiella (41.78%) in AL were a little higher than those in AU1 (30.39%, 25.02%) and AU2 (33.48%, 26.92%). These results showed that silage with urea alone could not improve the quality of alfalfa.


Subject(s)
Microbiota , Silage , Animals , Dietary Supplements , Fermentation , Medicago sativa , Milk/chemistry , Nutritive Value , Silage/microbiology , Urea/metabolism
2.
Food Funct ; 13(7): 4069-4085, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35315841

ABSTRACT

This study aimed to assess the influence of dietary supplementation of ε-polylysine on the gut microbiota and host nutrient metabolism, which is not systematically discussed by multi-omics analysis. A total of 40 mice were randomly divided into two groups exposed to either a basal diet (AIN-76A) or a basal diet with 150 ppm ε-polylysine. Fecal samples were collected for gut bacteria identification. Liver and plasma samples were collected for metabolomic and proteomic analyses. The results showed that ε-polylysine decreased the body weight of mice and affected the presence of certain types of intestinal microorganisms. The richness of the microbiota and number of phyla increased with age. ε-Polylysine affected the presence of genera and species, and either regulated or took part in the metabolism of energy, nitrogen, amino acids, lipids, carbohydrates, glycans, cofactors, and vitamins. The metabolite profiling showed that lipid and lipid-like molecules metabolites occupied the majority percent of plasma and liver metabolites. Additionally, ε-polylysine regulated the key role of metabolites and related metabolic enzymes in the metabolic pathways, especially phospholipid metabolism. In conclusion, dietary ε-polylysine improved the immunity of growing mice, and had a greater effect on the anabolism of nutrients in adult mice.


Subject(s)
Gastrointestinal Microbiome , Animals , Diet , Lipid Metabolism , Mice , Polylysine , Proteomics
3.
Front Microbiol ; 11: 544097, 2020.
Article in English | MEDLINE | ID: mdl-33312165

ABSTRACT

Intestinal microbiota plays an important role in the health of animals. However, little is known about the gut microbiota in Ningxiang pigs. Thus, we investigated how dietary supplementation with different ε-polylysine concentrations (0, 20, 40, 80, and 160 ppm) affected the ileal microbiota in Ningxiang pigs using a replicated 5 × 5 Latin square method. Each experimental period included 10 days for diet adaptation, 3 days for feces collection and 2 days for digesta collection. The ileal contents were collected and used for sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. The results revealed that ε-polylysine significantly decreased the digestibility of crude protein and crude fiber, as well as the utilization of metabolizable energy (P < 0.05). The relative abundances of 19 bacterial genera significantly increased, while those of 26 genera significantly decreased (P < 0.05). In addition, ε-polylysine increased the abundance of some bacteria (e.g., Faecalibacterium, Bifidobacterium, and lactic acid bacteria) and inhibited some other bacteria (e.g., Micrococcaceae, Acinetobacter, Anaerococcus, Peptoniphilus, Dehalobacterium, Finegoldia, Treponema, and Brevundimonas). Furthermore, based on the 16S rRNA gene data and data from the precalculated GreenGenes database, bacterial communities in the ileal contents exhibited enhanced functional maturation, including changes in the metabolism of carbohydrates, amino acids (e.g., alanine, lysine, tryptophan, cysteine, and methionine), cofactors, and vitamins (e.g., biotin, thiamine, and folate), as well as in the activity of the insulin signaling pathway. This study suggests that ε-polylysine may influence the utilization of feed nutrients by Ningxiang pigs, including proteins, lipids, metabolizable energy, and fiber, by regulating the gut microbiota.

4.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 269-279, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31553089

ABSTRACT

This study was conducted to determine the effects of oral administration with glutamate on metabolism of suckling piglets based on 1 H-Nuclear magnetic resonance (1 H NMR) spectroscopy through the level of metabolism. Forty-eight healthy [(Yorkshire × Landrace) × Duroc] piglets born on the same day with a similar birth bodyweight (1.55 ± 0.20 kg) were obtained from six sows (8 piglets per sow). The piglets from each sow were randomly assigned into four treatments (2 piglets per treatment). The piglets were given 0.09 g/kg body weight (BW) of sodium chloride (CN group), 0.03 g/kg BW monosodium glutamate (LMG group), 0.25 g/kg BW monosodium glutamate (MMG group) and 0.50 g/kg BW monosodium glutamate (HMG group) twice a day respectively. An 1 H NMR-based metabolomics' study found that the addition of monosodium glutamate (MSG) significantly reduced serum citrate content in 7-day-old piglets, while HMG significantly increased serum trimethylamine content and significantly reduced unsaturated fat content in 7-day-old piglets (p < .05). The content of glutamine, trimethylamine, albumin, choline and urea nitrogen was significantly increased and the creatinine content decreased significantly in the 21-day-old HMG (p < .05). Analysis of serum hormones revealed that glucagon-like peptide-1 (GLP-1) content in the 21-day-old HMG was highest (p < .05). The cholecystokinin (CCK) content in the HMG of 7-day-old piglets was lower than that in the LMG (p < .05), and the CCK content in the serum of the 21-day-old MMG was highest (p < .05). The serum leptin levels in the 21-day-old HMG were the lowest (p < .05). The serum insulin content in the 7-day-old MMG was highest (p < .05). This study suggests that MSG plays an important role in the metabolism of sugar, fat and protein (amino acids). These results provide a theoretical basis for designing piglet feed formulations.


Subject(s)
Animals, Suckling , Metabolome/drug effects , Metabolomics , Sodium Glutamate/pharmacology , Swine/physiology , Administration, Oral , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements , Swine/blood
5.
Trop Anim Health Prod ; 50(6): 1405-1410, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29644566

ABSTRACT

The objective of this study was to evaluate the effects of enzyme supplementation on the nutrient, amino acid, and energy utilization efficiency of citrus pulp and hawthorn pulp as unusual feedstuffs in Linwu ducks. Forty ducks were assigned to each treatment group and fed diets with or without complex enzyme supplementation. All birds received the same quantity of raw material (60 g) via the force-feeding procedure. With the exception of leucine and phenylalanine, amino acid concentrations in hawthorn pulp were twice those in citrus pulp. Enzyme supplementation significantly increased apparent dry matter digestibility (ADM) of citrus pulp (P < 0.05), but had no significant effects (P > 0.05) on the apparent and true utilization rates of other nutrients, apparent metabolizable energy (AME), or true metabolizable energy (TME), from citrus pulp and hawthorn pulp by Linwu ducks. However, enzyme supplementation significantly increased (P < 0.05) apparent gross energy, true gross energy, AME, and TME of hawthorn pulp for Linwu ducks. There were no differences in the apparent and true utilization rates of amino acids from citrus pulp (P > 0.56) between the groups, with the exception of arginine (P < 0.05). There was an increasing trend in the apparent and true utilization rates of alanine (P = 0.06) and tyrosine (P = 0.074) from citrus pulp with enzyme supplementation. The apparent and true utilization rates of threonine in hawthorn pulp were increased significantly (P < 0.05) following enzyme supplementation. The addition of exogenous enzymes improved the forage quality of citrus pulp and hawthorn pulp, which represent potential feed resources for husbandry production.


Subject(s)
Citrus , Crataegus , Digestion/drug effects , Ducks , Enzymes/administration & dosage , Amino Acids/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements , Energy Metabolism/drug effects , Random Allocation
6.
PLoS One ; 11(6): e0156835, 2016.
Article in English | MEDLINE | ID: mdl-27299526

ABSTRACT

A series of batch cultures were conducted to investigate the effects of oleic acid (OA) on in vitro ruminal dry matter degradability (IVDMD), gas production, methane (CH4) and hydrogen (H2) production, and proportion of fatty acids. Rumen fluid was collected from fistulated goats, diluted with incubation buffer, and then incubated with 500 mg Leymus chinensis meal supplemented with different amounts of OA (0, 20, 40, and 60 mg for the CON, OA20, OA40 and OA60 groups, respectively). Incubation was carried out anaerobically at 39°C for 48 h, and the samples were taken at 12, 24 and 48 h and subjected to laboratory analysis. Supplementation of OA decreased IVDMD, the cumulative gas production, theoretical maximum of gas production and CH4 production, but increased H2 production. However, no effect was observed on any parameters of rumen fermentation (pH, ammonia, production of acetate, propionate and butyrate and total volatile fatty acid production). The concentrations of some beneficial fatty acids, such as cis monounsaturated fatty acids and conjugated linoleic acid (CLA) were higher (P < 0.05) from OA groups than those from the control group at 12 h incubation. In summary, these results suggest that the OA supplementation in diet can reduce methane production and increase the amount of some beneficial fatty acids in vitro.


Subject(s)
Fatty Acids/metabolism , Fermentation , Goats/physiology , Oleic Acid/metabolism , Rumen/physiology , Acetates/metabolism , Ammonia/metabolism , Animal Feed/analysis , Animals , Dietary Supplements/analysis , Fatty Acids, Volatile/metabolism , Hydrogen/metabolism , Methane/metabolism , Propionates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL