Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Fitoterapia ; 174: 105872, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417681

ABSTRACT

A total of 19 resveratrol derivatives, including 12 imines and 7 amines, were synthesized, among which compounds 1, 5, 6, 7', 11', and 13 are new compounds. The anti-inflammatory and antitumor activities of these compounds were evaluated in vitro. The results revealed that compounds 1, 6, 8', 12, and 12' exhibited significant inhibitory effects (> 50%) on NO production at the concentration of 10 µM and their NO production inhibitory activities have a significant concentration-dependent ability. Additionally, compounds 8' and 12' showed promising COX-2 inhibitory activity, and the molecular docking analysis indicated their stable binding to multiple amino acid residues within the active pocket of COX-2 through hydrogen bonding. Moreover, compound 12' exhibited inhibitory effects on various tumor cell lines and induced apoptosis in MCF-7 breast cancer cells, which was not observed with resveratrol alone. Therefore, the N-substituted structural modification of resveratrol would have possibly enhanced the bioactivity of resveratrol and facilitated its application.


Subject(s)
Antineoplastic Agents , Humans , Molecular Structure , Structure-Activity Relationship , Resveratrol/pharmacology , Molecular Docking Simulation , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Dose-Response Relationship, Drug , Drug Design
2.
J Toxicol Sci ; 45(7): 373-390, 2020.
Article in English | MEDLINE | ID: mdl-32612006

ABSTRACT

DEHP (di-2-ethylhexyl phthalate), an environmental endocrine disruptor, is widely used in industrial products, particularly as plasticizers and softeners which could disrupt the function of the hypothalamic-pituitary-thyroid (HPT) axis. Rosmarinic acid (RA) possesses potential antioxidant and anti-inflammatory capacities in disease models. Nevertheless, evidence on the association between DEHP-induced thyroid dysfunction and inflammation, as well as the molecular mechanism underlying the protective effects of RA-mitigated DEHP-induced thyroid injury remains inconclusive. Male Sprague Dawley (SD) rats were intragastrically administered DEHP (150 mg/kg, 300 mg/kg, 600 mg/kg) once a day for 90 consecutive days. Also, FRTL-5 cells were treated with a wide range of DEHP concentrations (10-8, 10-7, 10-6, 10-5, 10-4, 10-3, 10-2 M) for 24 hr. Subsequently, RA (50 µM) was administered for 24 hr before 10-4 M DEHP challenge. We found that DEHP induced thyroid damage and inflammatory infiltration in vivo. In addition, we showed that DEHP triggered inflammatory cell death, which is mediated by multiple inflammasomes. Moreover, RA, pyroptosis inhibitor (Ac-YVAD-cmk) and antioxidant inhibitor (NAC) treatment significantly alleviated DEHP-induced thyrocyte death, suppressing pro-inflammatory cytokine production, inhibiting multiple inflammasomes activation and attenuating thyrocyte death, respectively. Collectively, our results reveal that a critical role of inflammasomes activation in DEHP-induced thyroid injury, and suggest that RA confers protection against DEHP-induced thyroid inflammation, and facilitating control of the effects of DEHP after given pyroptosis inhibitor or antioxidant inhibitor. These results indicate that it should be possible to provide novel insights into toxicologically and pharmacologically targeting this molecule to DEHP-induced inflammation.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Cinnamates/pharmacology , Cinnamates/therapeutic use , Depsides/pharmacology , Depsides/therapeutic use , Diethylhexyl Phthalate/adverse effects , Endocrine Disruptors/adverse effects , Hypothyroidism/chemically induced , Hypothyroidism/drug therapy , Inflammasomes/metabolism , Phytotherapy , Animals , Boraginaceae , Cell Death/drug effects , Cells, Cultured , Cytokines/metabolism , Diethylhexyl Phthalate/toxicity , Disease Models, Animal , Dose-Response Relationship, Drug , Endocrine Disruptors/toxicity , Hypothyroidism/metabolism , Inflammation Mediators/metabolism , Male , Rats, Sprague-Dawley , Thyroid Epithelial Cells/drug effects , Rosmarinic Acid
3.
Int Immunopharmacol ; 62: 203-211, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30015240

ABSTRACT

Monocytes recruited and adhering to the inflamed arteries are crucial for atherosclerosis development. Here, we report the role of zinc (Zn2+) homeostasis in monocyte adhesion and recruitment. By comparing the expression levels of Zn2+ transporters between non-adhering and adhering monocytes, we found that the Zn2+ importer ZIP8 was specifically upregulated in monocytes adhering to the aortas ex-vivo. Although the overexpression of ZIP8 increased the absorption of Zn2+, Fe2+ and Cd2+ in monocytes, only Zn2+ supplementation was demonstrated capable of promoting the adhesion of monocytes to endothelial monolayers in vitro. In addition, we confirmed the role of ZIP8-dependent Zn2+ influx in promoting monocyte adhesion to the aortas ex-vivo. More importantly, the enforced expression of ZIP8 increased monocyte adhesion and recruitment to the nascent atherosclerotic lesions in ApoE-/- mice. Overall, our results suggest that the Zn2+ influx in monocytes regulated by ZIP8 is a novel factor determining their adhesion and recruitment to atherosclerotic lesions, and that targeting ZIP8 or Zn2+ homeostasis may represent a novel strategy to interfere these activities.


Subject(s)
Aorta/metabolism , Cation Transport Proteins/metabolism , Cell Adhesion , Coronary Artery Disease/metabolism , Monocytes/metabolism , Zinc/metabolism , Animals , Aorta/pathology , Apolipoproteins E/genetics , Cation Transport Proteins/genetics , Cell Adhesion/genetics , Cell Line , Coronary Artery Disease/genetics , Coronary Artery Disease/pathology , Disease Models, Animal , Mice, Inbred C57BL , Mice, Knockout , Monocytes/pathology , Up-Regulation
4.
Nanoscale ; 4(5): 1794-9, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22310992

ABSTRACT

We report the synthesis of several unconventional 0-, 1- and 2-dimensional copper sulfide nanostrucutures by the chemical vapor deposition method. The key factor for morphology and structure control of a variety of copper sulfide products is the tuning of deposition and growth temperature to fit for the surface energy barriers and promote different growth directions. At a high growth temperature (480 °C) that provides enough thermal energy, a 0-D octahedral copper sulfide single crystal structure was synthesized. At a slightly lower growth temperature (460 °C), a new 1-D copper sulfide nanorod structure with a nanocrystal head was discovered for the first time. At a much lower growth temperature (150 °C), 2-D copper sulfide nanoflakes with a single crystal hexagonal structure were obtained. These novel structural varieties of copper sulfide can lead to discovering more unconventional material structures and growth mechanisms of other transitional metal chalcogenides, and may allow for new copper sulfide based devices and applications.

SELECTION OF CITATIONS
SEARCH DETAIL