Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Type of study
Language
Affiliation country
Publication year range
1.
J Ethnopharmacol ; 326: 117958, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38395179

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Nao-Ling-Su Capsule (NLSC) is a traditional prescription, which is composed of fifteen herbs such as epimedium, Polygala tenuifolia, and Schisandra chinensis. It has the effect of strengthening the brain, calming nerves, and protecting the kidney, which has been used clinically for many years to strengthen the brain and kidney. However, the effect of NLSC in the treatment of acute kidney injury (AKI) is still unclear. AIM OF THE STUDY: The present study aims to elucidate the pharmacological actions of NLSC in the treatment of AKI. MATERIALS AND METHODS: Molecular targets for NLSC and AKI were obtained from various databases, and then we built networks of interactions between proteins (PPI) by employing string databases. Additionally, we employed the DAVID database to conduct gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Molecular docking was conducted to analyze the interaction between core components and their corresponding core targets. Next, the C57BL male mice model of ischemia/reperfusion damage (IRI) was developed, and the nephridial protective effect of NLSC was evaluated. The accuracy of the expected targets was confirmed using real-time quantitative polymerase chain reaction (RT-qPCR). The renal protective effect of NLSC was assessed using an immortalized human kidney tubular (HK-2) cell culture produced by oxygen-glucose deprivation (OGD). RESULTS: Network pharmacology analysis identified 199 common targets from NLSC and AKI. STAT3, HSP90AA1, TP53, MAPK3, JUN, JAK2, and VEGFA could serve as potential drug targets and were associated with JAK2/STAT3 signaling pathway, PI3K-Akt signaling pathway, etc. The molecular docking analysis confirmed significant docking activity between the main bioactive components and core targets, including STAT3 and KIM-1. Moreover, the AKI mice model was successfully established and NLSC pretreatment could improve renal function and alleviate renal damage. NLSC could alleviate renal inflammation and tubular cell apoptosis, and decrease the expression of STAT3 and KIM-1 in AKI mice. In vitro, both NLSC and drug-containing serum may protect HK-2 cells by inhibiting STAT3 signaling, especially STAT3-mediated apoptosis and KIM-1 expression. CONCLUSION: NLSC could alleviate renal inflammation and apoptosis, exerting its beneficial effects by targeting the STAT3/KIM-1 pathway. NLSC is a promising candidate for AKI treatment and provides a new idea and method for the treatment of AKI.


Subject(s)
Acute Kidney Injury , Drugs, Chinese Herbal , Nephritis , Reperfusion Injury , Humans , Male , Animals , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Kidney , Acute Kidney Injury/drug therapy , Reperfusion Injury/drug therapy , Ischemia , Reperfusion , Inflammation , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
2.
Mol Cell Biochem ; 399(1-2): 189-200, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25376739

ABSTRACT

Hydrogen sulfide (H2S) plays an important role during rat myocardial injury. However, little is known about the role of H2S in hyperhomocysteinemia (HHcy)-induced cardiac dysfunction as well as the underlying mechanisms. In this study, we investigated whether sodium hydrosulfide (NaHS, a H2S donor) influences methionine-induced HHcy rat myocardial injury in intact rat hearts and primary neonatal rat cardiomyocytes. HHcy rats were induced by methionine (2.0 g/kg) and the daily administration of 80 µmol/L NaHS in the HHcy + NaHS treatment group. At the end of 4, 8, and 12 weeks, the ultrastructural alterations and functions of the hearts were observed using transmission electron microscopy and echocardiography system. The percentage of apoptotic cardiomyocytes, the mitochondrial membrane potential, and the production of reactive oxygen species (ROS) were measured. The expressions of cystathionine-γ-lyase (CSE), Bax and Bcl-2, caspase-3, phospho-endothelial nitric oxide synthase and the mitochondrial NOX4 and cytochrome c were analyzed by Western blotting. The results showed the cardiac dysfunction, the ultrastructural changes, and the apoptotic rate increase in the HHcy rat hearts. In the primary neonatal rat cardiomyocytes of HHcy group, ROS production was increased markedly, whereas the expression of CSE was decreased. However, treatment with NaHS significantly improved the HHcy rat hearts function, the ultrastructural changes, and decreased the levels of ROS in the primary neonatal rat cardiomyocytes administrated with HHcy group. Furthermore, NaHS down-regulated the expression of mitochondrial NOX4 and caspase-3 and Bax and inhibited the release of cytochrome c from mitochondria. In conclusion, H2S is involved in the attenuation of HHcy myocardial injury through the protection of cardiac mitochondria.


Subject(s)
Cardiotonic Agents/pharmacology , Hyperhomocysteinemia/drug therapy , Mitochondria, Heart/drug effects , Sulfides/pharmacology , Animals , Apoptosis , Cells, Cultured , Drug Evaluation, Preclinical , Heart Diseases/prevention & control , Hyperhomocysteinemia/complications , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Heart/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Rats, Wistar , Reactive Oxygen Species/metabolism
3.
Eur J Pharmacol ; 640(1-3): 150-6, 2010 Aug 25.
Article in English | MEDLINE | ID: mdl-20483352

ABSTRACT

The pharmacological basis of isosorbide mononitrate (ISMN), a widely used drug for cardiovascular diseases, is that it is metabolized to nitric oxide (NO). However, NO is a double-edged sword that results in either beneficial or detrimental effect. Vascular injury is the common consequence of many cardiovascular diseases, but it is not determined whether ISMN influences the restoration of injured artery in vivo. Carotid artery injury was induced by electric stimulation in mice. Vasoconstriction and endothelium-dependent and -independent relaxation were recorded by a multichannel acquisition and analysis system. ISMN (10 mg/kg, p.o.) treatment for 1 week and 1 month had no effect on reendothelialization, histology and function of carotid artery injured by electric stimulation. L-arginine (500 mg/kg, p.o.) and Nomega-nitro-L-arginine methyl ester (L-NAME) (50 mg/kg, p.o.) treatment for 1 week did not affect the reendothelialization process, but L-NAME treatment induced neointimal hyperplasia and inhibited endothelium-dependent relaxation in electrically injured artery. These results suggest that supplement of exogenous or endogenous NO has no effect on the restoration of injured artery, but inhibition of endogenous NO induces neointimal hyperplasia in injured artery. ISMN treatment does not affect the restoration of injured artery.


Subject(s)
Carotid Artery Injuries/drug therapy , Carotid Artery Injuries/physiopathology , Isosorbide Dinitrate/analogs & derivatives , Animals , Arginine/pharmacology , Carotid Artery Injuries/etiology , Carotid Artery Injuries/pathology , Electric Stimulation/adverse effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Isosorbide Dinitrate/pharmacology , Isosorbide Dinitrate/therapeutic use , Mice
SELECTION OF CITATIONS
SEARCH DETAIL