Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Science ; 380(6649): eabn9257, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37289866

ABSTRACT

Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and health span in monkeys. Mechanistically, taurine reduced cellular senescence, protected against telomerase deficiency, suppressed mitochondrial dysfunction, decreased DNA damage, and attenuated inflammaging. In humans, lower taurine concentrations correlated with several age-related diseases and taurine concentrations increased after acute endurance exercise. Thus, taurine deficiency may be a driver of aging because its reversal increases health span in worms, rodents, and primates and life span in worms and rodents. Clinical trials in humans seem warranted to test whether taurine deficiency might drive aging in humans.


Subject(s)
Aging , Taurine , Animals , Humans , Mice , Aging/blood , Aging/drug effects , Aging/metabolism , Cellular Senescence , Haplorhini , Longevity/drug effects , Longevity/physiology , Taurine/blood , Taurine/deficiency , Taurine/pharmacology , Dietary Supplements , DNA Damage/drug effects , Telomerase/metabolism
2.
Elife ; 122023 02 17.
Article in English | MEDLINE | ID: mdl-36799301

ABSTRACT

Mitochondrial dysfunction caused by aberrant Complex I assembly and reduced activity of the electron transport chain is pathogenic in many genetic and age-related diseases. Mice missing the Complex I subunit NADH dehydrogenase [ubiquinone] iron-sulfur protein 4 (NDUFS4) are a leading mammalian model of severe mitochondrial disease that exhibit many characteristic symptoms of Leigh Syndrome including oxidative stress, neuroinflammation, brain lesions, and premature death. NDUFS4 knockout mice have decreased expression of nearly every Complex I subunit. As Complex I normally contains at least 8 iron-sulfur clusters and more than 25 iron atoms, we asked whether a deficiency of Complex I may lead to iron perturbations, thereby accelerating disease progression. Consistent with this, iron supplementation accelerates symptoms of brain degeneration in these mice, while iron restriction delays the onset of these symptoms, reduces neuroinflammation, and increases survival. NDUFS4 knockout mice display signs of iron overload in the liver including increased expression of hepcidin and show changes in iron-responsive element-regulated proteins consistent with increased cellular iron that were prevented by iron restriction. These results suggest that perturbed iron homeostasis may contribute to pathology in Leigh Syndrome and possibly other mitochondrial disorders.


Iron is a mineral that contributes to many vital body functions. But as people age, it accumulates in many organs, including the liver and the brain. Excess iron accumulation is linked to age-related diseases like Parkinson's disease. Too much iron may contribute to harmful chemical reactions in the body. Usually, the body has systems in place to mitigate this harm, but these mechanisms may fail as people age. Uncontrolled iron accumulation may damage essential proteins, DNA and fats in the brain. These changes may kill brain cells causing neurodegenerative diseases like Parkinson's disease. Mitochondria, the cell's energy-producing factories, use and collect iron inside cells. As people age, mitochondria fail, which is also linked with age-related diseases. It has been unclear if mitochondrial failure may also contribute to iron accumulation and associated diseases like Parkinson's. Kelly et al. show that mitochondrial dysfunction causes iron accumulation and contributes to neurodegeneration in mice. In the experiments, Kelly et al. used mice with a mutation in a key-iron processing protein in mitochondria. These mice develop neurodegenerative symptoms and die early in life. Feeding the mice a high-iron diet accelerated the animals' symptoms. But providing them with an iron-restricted diet slowed their symptoms and extended their lives. Low-iron diets also slowed iron accumulation in the animal's liver and reduced brain inflammation. The experiments suggest that mitochondrial dysfunction contributes to both iron overload and brain degeneration. The next step for scientists is understanding the processes leading to mitochondrial dysfunction and iron accumulation. Then, scientists can determine if they can develop treatments targeting these processes. This research might lead to new treatments for Parkinson's disease or other age-related conditions caused by iron overload.


Subject(s)
Leigh Disease , Mitochondrial Diseases , Mice , Animals , Leigh Disease/genetics , Leigh Disease/pathology , Iron/metabolism , Neuroinflammatory Diseases , Mitochondrial Diseases/pathology , Mitochondria/metabolism , Electron Transport Complex I/metabolism , Mice, Knockout , Mammals/metabolism
3.
Chemistry ; 28(22): e202200472, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35213751

ABSTRACT

Inclusion of a second nitrogen atom in the aromatic core of phosphorus-nitrogen (PN) heterocycles results in unexpected tautomerization to a nonaromatic form. This tautomerization, initially observed in the solid state through X-ray crystallography, is also explained by computational analysis. We prepared an electron deficient analogue (2 e) with a fluorine on the pyridine ring and showed that the weakly basic pyridine resisted tautomerization, providing key insights to why the transformation occurs. To study the difference in solution vs. solid-state heterocycles, alkylated analogues that lock in the quinoidal tautomer were synthesized and their different 1 H NMR and UV/Vis spectra studied. Ultimately, we determined that all heterocycles are the aromatic tautomer in solution and all but 2 e switch to the quinoidal tautomer in the solid state. Better understanding of this transformation and under what circumstances it occurs suggest future use in a switchable on/off hydrogen-bond-directed receptor that can be tuned for complementary hydrogen bonding.


Subject(s)
Nitrogen , Phosphorus , Hydrogen Bonding , Pyridines
4.
FASEB J ; 27(9): 3805-17, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23752203

ABSTRACT

We examined the effects of a natural secondary bile acid, hyodeoxycholic acid (HDCA), on lipid metabolism and atherosclerosis in LDL receptor-null (LDLRKO) mice. Female LDLRKO mice were maintained on a Western diet for 8 wk and then divided into 2 groups that received chow, or chow + 1.25% HDCA, diets for 15 wk. We observed that mice fed the HDCA diet were leaner and exhibited a 37% (P<0.05) decrease in fasting plasma glucose level. HDCA supplementation significantly decreased atherosclerotic lesion size at the aortic root region, the entire aorta, and the innominate artery by 44% (P<0.0001), 48% (P<0.01), and 94% (P<0.01), respectively, as compared with the chow group. Plasma VLDL/IDL/LDL cholesterol levels were significantly decreased, by 61% (P<0.05), in the HDCA group as compared with the chow diet group. HDCA supplementation decreased intestinal cholesterol absorption by 76% (P<0.0001) as compared with the chow group. Furthermore, HDL isolated from the HDCA group exhibited significantly increased ability to mediate cholesterol efflux ex vivo as compared with HDL of the chow diet group. In addition, HDCA significantly increased the expression of genes involved in cholesterol efflux, such as Abca1, Abcg1, and Apoe, in a macrophage cell line. Thus, HDCA is a candidate for antiatherosclerotic drug therapy.


Subject(s)
Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Deoxycholic Acid/therapeutic use , Lipoproteins, HDL/blood , Receptors, LDL/deficiency , Animals , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Cholesterol, VLDL/blood , Female , Intestinal Absorption/drug effects , Lipoproteins, LDL/blood , Mice , Mice, Knockout , Receptors, LDL/genetics
SELECTION OF CITATIONS
SEARCH DETAIL