Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mar Environ Res ; 197: 106447, 2024 May.
Article in English | MEDLINE | ID: mdl-38513386

ABSTRACT

This study examined the nutrient budgets and biogeochemical dynamics in the coastal regions of northern Beibu Gulf (CNBG). Nutrient concentrations varied spatially and seasonally among the different bays. High nutrient levels were found in the regions with high riverine inputs and intensive mariculture. Using a three end-member mixing model, nutrient biogeochemistry within the ecosystem was estimated separately from complex physical mixing effects. Nutrient consumption dominated in most bays in summer, whereas nutrient regeneration dominated in winter, likely due to phytoplankton decomposition, vertical mixing and desorption. Through the Land-Ocean Interaction Coastal Zone (LOICZ) model, the robust nutrient budgets were constructed, indicating that the CNBG behaved as a sink of dissolved inorganic nitrogen, phosphorus and silicon. River-borne nutrient inputs were the dominant nutrient source, while residual flows and water exchange flows transported nutrient off the estuaries. This study could help us better understand nutrient cycles and nutrient sources/sinks in the CNBG.


Subject(s)
Ecosystem , Estuaries , Humans , Bays , Phytoplankton , Nutrients , China , Nitrogen/analysis , Environmental Monitoring , Phosphorus/analysis
2.
Theor Appl Genet ; 137(1): 23, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231256

ABSTRACT

KEY MESSAGE: Integrated QTL mapping and WGCNA condense the potential gene regulatory network involved in oil accumulation. A glycosyl hydrolases gene (GhHSD1) for oil biosynthesis was confirmed in Arabidopsis, which will provide useful knowledge to understand the functional mechanism of oil biosynthesis in cotton. Cotton is an economical source of edible oil for the food industry. The genetic mechanism that regulates oil biosynthesis in cottonseeds is essential for the genetic enhancement of oil content (OC). To explore the functional genomics of OC, this study utilized an interspecific backcross inbred line population to dissect the quantitative trait locus (QTL) interlinked with OC. In total, nine OC QTLs were identified, four of which were novel, and each QTL explained 3.62-34.73% of the phenotypic variation of OC. The comprehensive transcript profiling of developing cottonseeds revealed 3,646 core genes differentially expressed in both inbred parents. Functional enrichment analysis determined 43 genes were annotated with oil biosynthesis processes. Implementation of weighted gene co-expression network analysis showed that 803 differential genes had a significant correlation with the OC phenotype. Further integrated analysis identified seven important genes located in OC QTLs. Of which, the GhHSD1 gene located in stable QTL qOC-Dt3-1 exhibited the highest functional linkages with the other network genes. Phylogenetic analysis showed significant evolutionary differences in the HSD1 sequences between oilseed- and starch- crops. Furthermore, the overexpression of GhHSD1 in Arabidopsis yielded almost 6.78% higher seed oil. This study not only uncovers important genetic loci for oil accumulation in cottonseed, but also provides a set of new candidate genes that potentially influence the oil biosynthesis pathway in cottonseed.


Subject(s)
Arabidopsis , Gossypium , Gossypium/genetics , Cottonseed Oil , Phylogeny , Genomics
3.
Biotechnol Biofuels Bioprod ; 16(1): 169, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932798

ABSTRACT

BACKGROUND: Cottonseed oil is a promising edible plant oil with abundant unsaturated fatty acids. However, few studies have been conducted to explore the characteristics of cottonseed oil. The molecular mechanism of cottonseed oil accumulation remains unclear. RESULTS: In the present study, we conducted comparative transcriptome and weighted gene co-expression network (WGCNA) analysis for two G. hirsutum materials with significant difference in cottonseed oil content. Results showed that, between the high oil genotype 6053 (H6053) and the low oil genotype 2052 (L2052), a total of 412, 507, 1,121, 1,953, and 2,019 differentially expressed genes (DEGs) were detected at 10, 15, 20, 25, and 30 DPA, respectively. Remarkably, a large number of the down-regulated DEGs were enriched in the phenylalanine metabolic processes. Investigation into the dynamic changes of expression profiling of genes associated with both phenylalanine metabolism and oil biosynthesis has shed light on a significant competitive relationship in substrate allocation during cottonseed development. Additionally, the WGCNA analysis of all DEGs identified eight distinct modules, one of which includes GhPXN1, a gene closely associated with oil accumulation. Through phylogenetic analysis, we hypothesized that GhPXN1 in G. hirsutum might have been introgressed from G. arboreum. Overexpression of the GhPXN1 gene in tobacco leaf suggested a significant reduction in oil content compared to the empty-vector transformants. Furthermore, ten other crucial oil candidate genes identified in this study were also validated using quantitative real-time PCR (qRT-PCR). CONCLUSIONS: Overall, this study enhances our comprehension of the molecular mechanisms underlying cottonseed oil accumulation.

4.
BMC Complement Med Ther ; 23(1): 382, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891569

ABSTRACT

AIM: The objective of this study was to evaluate the efficacy of Tai Chi, a mind-body movement therapy originating from China, on depression in middle-aged and older adults. METHODS: A systematic search was conducted in seven databases (Embase, Cochrane, Medline, Wanfang, SinoMed, Weipu date, CNKI) for Randomized Controlled Trials (RCTs) published until Apr 16, 2023. The quality assessment, heterogeneity analysis, subgroup analysis, and sensitivity analysis of 12 RCTs selected from the literature were performed. Meta-analyses were conducted using RevMan 5.4 software. RESULTS: The study included 12 trials comprising 731 participants that met the inclusion criteria. The findings revealed that Tai Chi significantly improved depression in middle-aged and older adults [SMD = -1.21, 95% CI (-1.59, -0.83), I2 = 87.6%, P < 0.001]. Subgroup analysis revealed that the number of exercise weeks within the specified range, the total duration of exercise, and Tai Chi maneuvers had the greatest benefits on depression in middle-aged and elderly people. The results demonstrated that interventions lasting more than 24 weeks were more effective [SMD = -1.66, 95% CI (-2.28, -1.04), P < 0.05] than those lasting only 12 weeks [SMD = -0.73, 95% CI (-1.08, -0.38), P < 0.05]. The effect size was more significant when the total duration of the intervention was more than 2400 min [SMD = -1.31, 95% CI (-1.71, -0.92), P < 0.001], and when the 24-style Tai Chi exercise was selected [SMD = -1.06, 95% CI (-1.37, -0.75), P < 0.001], the difference was also statistically significant. Funnel plots combined with sensitivity analyses, Begg's and Egger's tests indicated no publication bias. CONCLUSION: The study suggests that Tai Chi can be an alternative therapy for reducing depression in middle-aged and older adults. It is recommended to prolong the Tai Chi exercise period to more than 24 weeks, with a total exercise duration of more than 2400 min, and 24-style Tai Chi should be selected to achieve the best therapeutic effect in middle-aged and older adults with depression. It should be noted that there may be lower-quality studies in the RCT literature analyzed, which may limit the general applicability and credibility of the conclusions.


Subject(s)
Depression , Tai Ji , Aged , Humans , Middle Aged , China , Exercise , Tai Ji/methods , Depression/therapy , Randomized Controlled Trials as Topic
5.
Fitoterapia ; 170: 105631, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37536472

ABSTRACT

Five new polyacetylene derivatives (1-5), cyclocodonlandiynosides A-E, and eight known analogues (6-13) were isolated and identified from the fruits of Cyclocodon lancifolius. Their structures were established via spectroscopic and chemical methods, including NMR, HRESIMS, enzymatic hydrolysis, Mo2(OAc)4-induced circular dichroism and sugar derivatization. Compound 1 contains a nitrogenous fragment, which was rarely found in C14 polyacetylenes. Compounds 3 and 4 are polyacetylene glucosides possessing novel aglycones. All the isolated polyacetylenes (except 12) were screened for their xanthine oxidase (XO) inhibitory activity. All the tested compounds, at the concentration of 62.5 µg/mL, showed XO inhibiting effects. Among them, 13 and 3 showed the most potent XO inhibitory activity with IC50 values of 87.65 and 96.32 µM, compared to the positive control allopurinol with an IC50 value of 19.25 µM.


Subject(s)
Fruit , Xanthine Oxidase , Polyacetylene Polymer , Xanthine Oxidase/chemistry , Molecular Structure , Plant Extracts/chemistry , Polyynes/chemistry , Polyynes/pharmacology , Enzyme Inhibitors/pharmacology
6.
Front Immunol ; 14: 1159957, 2023.
Article in English | MEDLINE | ID: mdl-37334364

ABSTRACT

Objective: Patients with erythrodermic psoriasis (EP) are associated with an increased risk of cardiovascular disease (CVD), because of the more severe inflammation in the skin areas. This study aimed to develop a diagnostic model for the risk of CVD in EP patients based on the available features and multidimensional clinical data. Methods: A total of 298 EP patients from Beijing Hospital of Traditional Chinese Medicine were retrospectively included in this study from May 5th, 2008, to March 3rd, 2022. Of them, 213 patients were selected as the development set by random sampling, and clinical parameters were analyzed by univariate and backward stepwise regression. Whereas the remaining 85 patients were randomly selected as the validation set. The model performance was later assessed in terms of discrimination, calibration, and clinical usefulness. Results: In the development set, the CVD rate was 9%, which was independently correlated with age, glycated albumin (GA>17%), smoking, albumin (ALB<40 g/L), and lipoprotein(a) (Lp(a)>300 mg/L). The area under the ROC curve (AUC) value was 0.83 (95% confidence interval CI, 0.73,0.93). For the validation set of EP patients, the AUC value was 0.85 (95%CI, 0.76,0.94). According to decision curve analysis, our model exhibited favorable clinical applicability. Conclusion: EP patients with age, GA>17%, smoking, ALB<40 g/L, and Lp(a)>300 mg/L are associated with a higher risk of CVD. The nomogram model performs well in predicting the probability of CVD in EP patients, which may help improve perioperative strategies and good treatment outcomes.


Subject(s)
Cardiovascular Diseases , Psoriasis , Humans , Nomograms , Retrospective Studies , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Psoriasis/diagnosis , Psoriasis/epidemiology
7.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5217-5223, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36472028

ABSTRACT

This study explored the correlation between color and chemical components of Chrysanthemi Indici Flos(CIF), aiming at providing a reference for its procurement, evaluation, and breeding. Colorimeter and ultra-performance liquid chromatograph(UPLC) were used to determine the color(lightness-shade chromaticity value L~*, red-green chromaticity value a~*, yellow-blue chromati-city value b~*) and chemical components(cynaroside, linarin, luteolin, apigenin, and chlorogenic acid) of 84 CIF germplasms, respectively. Diversity analysis, correlation analysis, regression analysis, and cluster analysis were performed. The results showed that the color and chemical components of CIF were diversified. Chlorogenic acid was in significantly positive correlation with L~* and b~* and significantly negative correlation with a~*. Cynaroside and grey relational grade γ_i of chemical components were in significantly po-sitive correlation with b~* and L~*, respectively, whereas linarin, luteolin, and apigenin had no significant correlation with L~*, a~*, or b~*. The 84 CIF germplasms were clustered into 4 clades. In addition, germplasms in clade Ⅲ had higher γ_i and total color value(E~*_(ab)) than those in other clades, with the best quality and color, and a germplasm with the highest quality, bright yellow color, and highest content of linarin was screened out in this clade. Thus, CIF with bright yellow color had high content of cymaroside and chlorogenic acid and thereby high quality. In summary, the color can be used to quickly predict the quality of CIF. Our results provided data for the evaluation of CIF quality by color and a reference for its procurement and breeding.


Subject(s)
Chrysanthemum , Apigenin/analysis , Chlorogenic Acid/analysis , Chromatography, High Pressure Liquid/methods , Chrysanthemum/chemistry , Luteolin/analysis , Plant Breeding
8.
Front Pharmacol ; 13: 971715, 2022.
Article in English | MEDLINE | ID: mdl-36147319

ABSTRACT

Background: Psoriasis represents the chronic, recurrent and inflammatory disorder. The Traditional Chinese Medicine Xiyanping injection (XYP) is extensively applied in China for treating diverse inflammatory disorders, such as bronchitis, viral pneumonia or upper respiratory tract infection. XYP may offer a potential treatment for psoriasis vulgaris (PV). This study focused on analyzing whether XYP combined with acitretin was effective and safe. Methods: The present meta-analysis was carried out in line with guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). This systematic review was registered in PROSPERO (CRD42022333273). Besides, relevant randomized controlled trials (RCTs) that compared XYP plus acitretin with acitretin alone for treating PV were searched from several databases from their inception till May 2022. In addition, this work utilized RevMan5.4 to conduct risk assessment as well as meta-analysis. Results: This meta-analysis selected altogether 10 RCTs including 815 subjects. Upon quality assessment, the RCTs mainly had low or unclear risk. According to our meta-analysis results, relative to acitretin monotherapy, XYP plus acitretin increased the total clinical effective rate, as evidenced by Psoriasis area and severity index score (PASI)-20, PASI-30 and PASI-60 in patients with PV [risk ratio (RR) = 1.23 Z = 4.87, p < 0.00001, 95% confidence interval (CI): 1.13-1.34; RR = 1.29, Z = 3.89, p = 0.009, 95% CI: 1.07 to 1.55; and RR = 1.31, Z = 3.89, p = 0.0001, 95% CI: 1.14-1.49]; the reduced levels of TNF-α, MCP-1 and RANTES, the alleviated side effects resulting from acitretin like itchiness (RR = 0.54, 95% CI: 0.4 to 0.74, Z = 3.94, p < 0.0001), and the increased levels of aminotransferases and dyslipidemia (RR = 0.5, 95%CI = 0.29, 0.86, p = 0.01; and RR = 0.41, 95% CI = 0.23, 0.75, p = 0.004). Conclusion: As suggested in the present meta-analysis, XYP combined with acitretin effectively and safely treats PV. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022333273, identifier PROSPERO 2022 CRD42022333273.

9.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2729-2737, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35718493

ABSTRACT

The study aimed to investigate the effects of galangin on learning and memory impairments and Akt/MEF2 D/Beclin-1 signaling pathway in APP/PS1 double-transgenic mice. The mice in this experiment were divided into the normal group, model group, low-(25 mg·kg~(-1)), medium-(50 mg·kg~(-1)), and high-dose(100 mg·kg~(-1)) galangin groups, donepezil(3 mg·kg~(-1)) group, Akt inhibitor(25 mg·kg~(-1)) group, and autophagy inhibitor(30 mg·kg~(-1)) group, with ten in each group, and administered with the corresponding drugs for 30 successive days. On the 24 th day of medication, the water maze and dark avoidance tests were performed. The levels of p-tau, ß-amyloid peptide 1-42(Aß_(42)), acetylcholinesterase(AChE), ß-site amyloid precursor protein cleaving enzyme 1(BACE1), and amyloid precursor protein(APP) in hippocampus were detected by ELISA, the Beclin-1 mRNA expression by RT-PCR, the expression of Aß_(42) and glial fibrillary acidic protein(GFAP) by immunohistochemistry, and the expression of myocyte enhancer factor 2 D(MEF2 D) by immunofluorescence assay. The pathological changes in hippocampus were observed after HE staining, and the expression of Akt, MEF2 D, and Beclin-1 in hippocampus were assayed by Western blot. These results showed that compared with the normal group, the model group exhibited prolonged swimming time, increased number of errors and electric shocks, up-regulated p-tau, Aß_(42), APP, AChE, BACE1, GFAP, and Beclin-1, shortened incubation period, decreased p-Akt and MEF2 D, and obvious hippocampal injury. Compared with the model group, donepezil and galangin shortened the swimming time, reduced the number of errors and electric shocks, down-regulated the expression of p-tau, Aß_(42), APP, AChE, BACE1, GFAP, and Beclin-1, prolonged the incubation period, up-regulated p-Akt and MEF2 D, and improved the pathological changes in hippocampus. Compared with the autophagy inhibitor group, galangin prolonged the swimming time, elevated the number of errors and electric shocks, enhanced the expression of p-tau, Aß_(42), APP, AChE, BACE1, GFAP, and Beclin-1, shortened the incubation period, and diminished the expression of p-Akt and MEF2 D. In conclusion, galangin improves the learning and memory impairments and hippocampal neuron injury of APP/PS1 mice, which may be related to its regulation of Akt/MEF2 D/Beclin-1 signaling pathway.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Acetylcholinesterase , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Beclin-1/pharmacology , Disease Models, Animal , Donepezil/metabolism , Donepezil/pharmacology , Donepezil/therapeutic use , Flavonoids , Hippocampus , MEF2 Transcription Factors , Maze Learning , Memory Disorders , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
10.
Phytomedicine ; 102: 154142, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35623158

ABSTRACT

BACKGROUND: Pyroptosis, an inflammatory form of programmed cell death (PCD), is reported to play important roles in the treatment of tumors. In our previous studies, we found that neobractatin (NBT), a caged prenylxanthone isolated from edible fruits of Garcinia bracteata C. Y. Wu ex Y. H. Li, showed anticancer effects against different cancer cells. However, the effect of NBT on pyroptosis is not well understood. PURPOSE: This study aims to investigate whether and how GSDME-mediated pyroptosis contributes to NBT-induced antitumor effects in esophageal cancer (EC) cells. METHODS: Cell viability assay and colony formation assay were used to determine the anticancer effects of NBT in esophageal cancer cells. Lactate dehydrogenase (LDH) release assay and microscopy imaging were used to detect the main characteristic of pyroptosis. CRISPR-Cas9 knockout and siRNA knockdown were performed to verify the roles of GSDME and caspase-3 in NBT-induced pyroptosis. Flow cytometry was used to measure the reactive oxygen species (ROS) level and cell apoptosis. The changes of related protein level were detected by Western blot. Furthermore, animal experiments were used to verify the in vivo effect of NBT. RESULTS: The results showed that NBT reduced the viability of EC cells mainly through GSDME-mediated pyroptosis. Morphologically, NBT induced cell swelling and formed large bubbles emerging from plasma membrane in wild type EC cells. Furthermore, NBT induced the cleavage of GSDME by activating caspase-3 in EC cells. On the other hand, caspase-3 activated by NBT also induced apoptosis especially at high dosage. Knocking down GSDME switched NBT-induced cell death from mainly pyroptosis to apoptosis in vivo and in vitro. Mechanistic studies indicated that NBT led to accumulation of ROS, which then regulated the phosphorylation of both JNK and MEK/ERK. In the absence of ROS or caspase-3, NBT-induced pyroptosis and apoptosis were completely reversed. Moreover, NBT showed a significant antitumor effect in both the KYSE150 and GSDME knockout KYSE150-/- xenograft models by inducing pyroptosis and apoptosis, respectively. CONCLUSION: Our results indicated that natural compound NBT could induce GSDME-mediated pyroptosis and apoptosis in esophageal cancer cells, making it a potential therapeutic drug in clinical treatment.


Subject(s)
Esophageal Neoplasms , Garcinia , Animals , Caspase 3/metabolism , Esophageal Neoplasms/drug therapy , Humans , Pyroptosis , Reactive Oxygen Species/metabolism , Receptors, Estrogen/metabolism
11.
Physiol Plant ; 174(3): e13701, 2022 May.
Article in English | MEDLINE | ID: mdl-35526222

ABSTRACT

Cotton is not only the most important fiber crop but also the fifth most important oilseed crop in the world because of its oil-rich seeds as a byproduct of fiber production. By comparative transcriptome analysis between two germplasms with diverse oil accumulation, we reveal pieces of the gene expression network involved in the process of oil synthesis in cottonseeds. Approximately, 197.16 Gb of raw data from 30 RNA sequencing samples with 3 biological replicates were generated. Comparison of the high-oil and low-oil transcriptomes enabled the identification of 7682 differentially expressed genes (DEGs). Based on gene expression profiles relevant to triacylglycerol (TAG) biosynthesis, we proposed that the Kennedy pathway (diacylglycerol acyltransferase-catalyzed diacylglycerol to TAG) is the main pathway for oil production, rather than the phospholipid diacylglycerol acyltransferase-mediated pathway. Using weighted gene co-expression network analysis, 5312 DEGs were obtained and classified into 14 co-expression modules, including the MEblack module containing 10 genes involved in lipid metabolism. Among the DEGs in the MEblack module, GhCYSD1 was identified as a potential key player in oil biosynthesis. The overexpression of GhCYSD1 in yeast resulted in increased oil content and altered fatty acid composition. This study may not only shed more light on the underlying molecular mechanism of oil accumulation in cottonseed oil, but also provide a set of new gene for potential enhancement of oil content in cottonseeds.


Subject(s)
Cottonseed Oil , Plant Oils , Cottonseed Oil/analysis , Cottonseed Oil/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Seeds/metabolism , Transcriptome/genetics
12.
Nutrients ; 14(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35631196

ABSTRACT

The long-term associations between dietary copper (Cu) and selenium (Se) intakes and type 2 diabetes mellitus (T2DM) risk are unclear. We aimed to examine the prospective associations between dietary Cu and Se intakes and T2DM risk in Chinese adults. A total of 14,711 adults from the China Health and Nutrition Survey (1997-2015) were included. Nutrient intakes were assessed by 3 consecutive 24 h recalls and food-weighing methods. T2DM was identified by a validated questionnaire and laboratory examination. Cox regression models were used for statistical analysis. A total of 1040 T2DM cases were diagnosed during 147,142 person-years of follow-up. In fully adjusted models, dietary Cu or Se intake was not associated with T2DM risk. Dietary Se intake significantly modified the association between dietary Cu intake and T2DM risk, and dietary Cu intake was positively associated with T2DM risk when Se intake was lower than the median (p-interaction = 0.0292). There were no significant effect modifications on the associations by age, sex, BMI, or region. Although dietary Cu or Se intake was not independently associated with T2DM risk in Chinese adults free from cardiometabolic diseases and cancer at the baseline, there was a significant interaction between dietary Cu and Se intakes on T2DM risk.


Subject(s)
Diabetes Mellitus, Type 2 , Selenium , Adult , China/epidemiology , Copper , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Humans , Nutrition Surveys
13.
Article in English | MEDLINE | ID: mdl-34484410

ABSTRACT

Vitis amurensis Rupr. "Beibinghong" is abundant in anthocyanins, including malvidin (Mv), malvidin-3-glucoside (Mv3G), and malvidin-3,5-diglucoside (Mv35 G). Anthocyanins offer nutritional and pharmacological effects, but their stability is poor. Interaction of malvid anthocyanins with caffeic acid through ultrahigh pressure technology produces stable anthocyanin derivatives. This study aims to identify the structure of stable mallow-like anthocyanins and to determine the effect of these stable anthocyanins on human umbilical vein endothelial cells (HUVECs) with H2O2-induced oxidative damage and the signaling pathway involved. The products of malvid anthocyanins and caffeic acid bonding were identified and analyzed using ultra-high performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS/MS). The bonding products were malvidin-3-O-guaiacol (Mv3C), malvidin-3-O-(6″-O-caffeoyl)-glucoside (Mv3CG), and malvidin-3-O-(6″-O-caffeoyl)-5-diglucoside (Mv3C5G). An oxidative stress injury model in HUVECs was established using H2O2 and treated with Mv, Mv3G, Mv35 G, Mv3C, Mv3CG, and Mv3C5G at different concentrations (10, 50, and 100 µmol/L). Results showed that the above compound concentrations can significantly increase cell proliferation rate and reduce intracellular reactive oxygen species at 100 µmol/L. The effects of the most active products Mv and Mv3C on the AMP-activated protein (AMPK)/silencing information regulator-1 (SIRT1) pathway were analyzed. Results showed that Mv and Mv3C significantly increased SOD activity in the cells and significantly upregulated the expression of SIRT1 mRNA, SIRT1, and p-AMPK protein. However, they did not significantly change the expression of AMPK protein. After the silent intervention of siRNA in SIRT1 gene expression, the upregulation of SIRT1 and p-AMPK protein by Mv and Mv3C was significantly inhibited. These results indicate that stabilization malvid anthocyanins exerts an antioxidant activity via the AMPK/SIRT1 signaling pathway.

14.
Int J Biol Macromol ; 183: 2074-2087, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34097961

ABSTRACT

Lycium barbarum polysaccharides (LBPs) are known for their beneficial effects on diabetes, NAFLD and related chronic metabolic diseases induced by high-fat diet (HFD). However, the relevant researches are mainly about the whole crude polysaccharides, the specific active ingredient of LBPs and its bioactivity have been rarely explored. Herein, a homogeneous polysaccharide (LBP-W) was isolated and purified from crude LBPs. Structure characterizations indicated that LBP-W contained a main chain consisting of a repeated unit of →6)-ß-Galp(1 â†’ residues with branches composed of α-Araf, ß-Galp and α-Rhap residues at position C-3. The objective of this study was to evaluate the anti-obesogenic effect of LBP-W and figure out the underlying mechanisms. In vivo efficacy trial illustrated that LBP-W supplements can alleviate HFD-induced mice obesity significantly. Gut microbiota analysis showed that LBP-W not only improved community diversity of intestinal flora, but also regulated their specific genera. Moreover, LBP-W can increase the content of short-chain fatty acids (SCFAs), a metabolite of the intestinal flora. In summary, all these results demonstrated that the homogeneous polysaccharide purified from L. barbarum could be used as a prebiotic agent to improve obesity by modulating the composition of intestinal flora and the metabolism of SCFAs.


Subject(s)
Anti-Obesity Agents/pharmacology , Bacteria/drug effects , Drugs, Chinese Herbal/pharmacology , Energy Metabolism/drug effects , Gastrointestinal Microbiome/drug effects , Obesity/drug therapy , Prebiotics , Animals , Anti-Obesity Agents/chemistry , Arabinose/chemistry , Arabinose/pharmacology , Bacteria/growth & development , Bacteria/metabolism , Biomarkers/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Dysbiosis , Fatty Acids/blood , Galactose/chemistry , Galactose/pharmacology , Male , Mice, Inbred C57BL , Molecular Structure , Obesity/blood , Obesity/microbiology , Rhamnose/chemistry , Rhamnose/pharmacology , Structure-Activity Relationship
15.
Food Res Int ; 137: 109410, 2020 11.
Article in English | MEDLINE | ID: mdl-33233097

ABSTRACT

Gut microbiome has been proven to be involved in the development of type 2 diabetes (T2D). Additionally, increasing evidence showed that the composition of gut microbiome is highly associated with the outcome of T2D therapy. Previously we demonstrated that feruloylated oligosaccharides (FOs) and ferulic acid (FA) alleviated diabetic syndrome in rats, but the detailed mechanism has not been explored yet. In this study we strived to characterize how FOs and FA altered the gut microbiome and related metabolome in diabetic rats by using high-throughput sequencing of 16S rRNA and gas chromatography (GC). Our results showed that FOs reduced the abundance of Lactobacillus, Ruminococcus, Oscillibacter, and Desulfovibrio, but increased the abundance of Akkermansia, Phascolarctobacterium and Turicibacter. The structure of gut microbiome in FOs treated rats was similar with healthy rats rather than diabetic rats. Likewise, FA decreased the portion of Lactobacillus, Ruminococcus, but promoted the growth of Bacteroides, Blautia, Faecalibacterium, Parabacteroides and Phascolarctobacterium. Additionally, the short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs), the main bacterial lipid metabolites in gut mediating host glucose metabolism, was dramatically elevated along with FOs and FA treatment. Our findings indicated that FOs and FA attenuated diabetic syndrome in rats most likely by modulating the composition and metabolism of gut microbiome. The study gives new insight into the mechanism underlying the anti-diabetes effect of functional foods as well as facilitates the development of dietary supplements for diabetic patients.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Animals , Coumaric Acids , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Humans , Oligosaccharides/pharmacology , RNA, Ribosomal, 16S , Rats
16.
Int J Mol Sci ; 21(3)2020 Jan 29.
Article in English | MEDLINE | ID: mdl-32013234

ABSTRACT

Calcineurin B-like protein-interacting protein kinases (CIPKs), as key regulators, play an important role in plant growth and development and the response to various stresses. In the present study, we identified 80 and 78 CIPK genes in the Gossypium hirsutum and G. barbadense, respectively. The phylogenetic and gene structure analysis divided the cotton CIPK genes into five groups which were classified into an exon-rich clade and an exon-poor clade. A synteny analysis showed that segmental duplication contributed to the expansion of Gossypium CIPK gene family, and purifying selection played a major role in the evolution of the gene family in cotton. Analyses of expression profiles showed that GhCIPK genes had temporal and spatial specificity and could be induced by various abiotic stresses. Fourteen GhCIPK genes were found to contain 17 non-synonymous single nucleotide polymorphisms (SNPs) and co-localized with oil or protein content quantitative trait loci (QTLs). Additionally, five SNPs from four GhCIPKs were found to be significantly associated with oil content in one of the three field tests. Although most GhCIPK genes were not associated with natural variations in cotton oil content, the overexpression of the GhCIPK6 gene reduced the oil content and increased C18:1 and C18:1+C18:1d6 in transgenic cotton as compared to wild-type plants. In addition, we predicted the potential molecular regulatory mechanisms of the GhCIPK genes. In brief, these results enhance our understanding of the roles of CIPK genes in oil synthesis and stress responses.


Subject(s)
Genome, Plant , Gossypium/genetics , Plant Oils/metabolism , Plant Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Chromosomes, Plant , Fatty Acids/metabolism , Gene Duplication , Gene Expression Regulation, Plant/drug effects , Gossypium/chemistry , Gossypium/metabolism , MicroRNAs/metabolism , Multigene Family , Phylogeny , Plant Oils/chemistry , Plant Proteins/classification , Plant Proteins/metabolism , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/metabolism , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases/classification , Protein Serine-Threonine Kinases/metabolism , Quantitative Trait Loci , Regulatory Elements, Transcriptional/genetics , Salts/pharmacology , Seeds/chemistry , Seeds/metabolism , Stress, Physiological , Transcription Factors/chemistry , Transcription Factors/metabolism
18.
Plant Sci ; 286: 89-97, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31300146

ABSTRACT

Cottonseed oil is one of the most important renewable resources for edible oil and biodiesel. To detect QTLs associated with cottonseed oil content (OC) and identify candidate genes that regulate oil biosynthesis, a panel of upland cotton germplasm lines was selected among those previously used to perform GWASs in China. In the present study, 13 QTLs associated with 53 common SNPs on 13 chromosomes were identified in multiple environments based on 15,369 polymorphic SNPs using the Cotton63 KSNP array. Of these, the OC QTL qOC-Dt5-1 delineated by nine SNPs occurred in a confidence interval of 4 SSRs with previously reported OC QTLs. A combined transcriptome and qRT-PCR analysis revealed that a peroxidase gene (GhPRXR1) was predominantly expressed during the middle-late stage (20-35 days post anthesis) of ovule development. The overexpression of GhPRXR1 in yeast significantly increased the OC by 20.01-37.25 %. Suppression of GhPRXR1 gene expression in the virus-induced gene-silenced cotton reduced the OC by 18.11%. Our results contribute to identifying more OC QTLs and verifying a candidate gene that influences cottonseed oil biosynthesis.


Subject(s)
Genome-Wide Association Study , Gossypium/genetics , Phosphoenolpyruvate Carboxylase/genetics , Plant Oils/chemistry , Plant Proteins/genetics , China , Gossypium/chemistry , Gossypium/enzymology , Gossypium/metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Plant Proteins/metabolism , Quantitative Trait Loci
19.
Cell Death Dis ; 10(8): 554, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31320607

ABSTRACT

Tumor metastasis is the predominant cause of lethality in cancer. We found that Neobractatin (NBT), a natural compound isolated from Garcinia bracteata, could efficiently inhibit breast and lung cancer cells metastasis. However, the mechanisms of NBT inhibiting cancer metastasis remain unclear. Based on the RNA-sequencing result and transcriptome analysis, Muscleblind-like 2 (MBNL2) was found to be significantly upregulated in the cells treated with NBT. The Cancer Genome Atlas (TCGA) database analysis indicated that the expression of MBNL2 in breast and lung carcinoma tumor tissues was significantly lower compared to normal tissues. We thus conducted to investigate the antimetastatic role of MBNL2. MBNL2 overexpression mimicked the effect of NBT on breast cancer and lung cancer cell motility and metastasis, in addition significantly enhanced the inhibition effect of NBT. MBNL2 knockdown furthermore partially eliminated the inhibitory effect of NBT on metastasis. Mechanistically, we demonstrated that NBT- and MBNL2-mediated antimetastasis regulation significantly correlated with the pAKT/epithelial-mesenchymal transition (EMT) pathway. Subsequent in vivo study showed the same metastasis inhibition effect in NBT and MBNL2 in MDA-MB-231 xenografts mouse model. This study suggest that NBT possesses significant antitumor activity in breast and lung cancer cells that is partly mediated through the MBNL2 expression and enhancement in metastasis via the pAKT/EMT signaling pathway.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , RNA-Binding Proteins/metabolism , Xanthones/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Survival/drug effects , Cell Survival/genetics , Epithelial-Mesenchymal Transition/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , RNA, Small Interfering , RNA-Binding Proteins/genetics , Up-Regulation , Xanthones/chemistry , Xanthones/pharmacology , Xenograft Model Antitumor Assays
20.
BMC Genomics ; 20(1): 402, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31117950

ABSTRACT

BACKGROUND: Cotton (Gossypium spp.) is the most important natural fiber crop worldwide, and cottonseed oil is its most important byproduct. Phospholipid: diacylglycerol acyltransferase (PDAT) is important in TAG biosynthesis, as it catalyzes the transfer of a fatty acyl moiety from the sn-2 position of a phospholipid to the sn-3 position of sn-1, 2-diacylglyerol to form triacylglycerol (TAG) and a lysophospholipid. However, little is known about the genes encoding PDATs involved in cottonseed oil biosynthesis. RESULTS: A comprehensive genome-wide analysis of G. hirsutum, G. barbadense, G. arboreum, and G. raimondii herein identified 12, 11, 6 and 6 PDATs, respectively. These genes were divided into 3 subfamilies, and a PDAT-like subfamily was identified in comparison with dicotyledonous Arabidopsis. All GhPDATs contained one or two LCAT domains at the C-terminus, while most GhPDATs contained a preserved single transmembrane region at the N-terminus. A chromosomal distribution analysis showed that the 12 GhPDAT genes in G. hirsutum were distributed in 10 chromosomes. However, none of the GhPDATs was co-localized with quantitative trait loci (QTL) for cottonseed oil content, suggesting that their sequence variations are not genetically associated with the natural variation in cottonseed oil content. Most GhPDATs were expressed during the cottonseed oil accumulation stage. Ectopic expression of GhPDAT1d increased Arabidopsis seed oil content. CONCLUSIONS: Our comprehensive genome-wide analysis of the cotton PDAT gene family provides a foundation for further studies into the use of PDAT genes to increase cottonseed oil content through biotechnology.


Subject(s)
Diacylglycerol O-Acyltransferase/genetics , Gene Expression Regulation, Plant , Gossypium/genetics , Multigene Family , Phospholipids/analysis , Plant Oils/analysis , Plant Proteins/genetics , Diacylglycerol O-Acyltransferase/metabolism , Evolution, Molecular , Gossypium/growth & development , Gossypium/metabolism , Phylogeny , Plant Proteins/metabolism , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL