Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Hazard Mater ; 459: 132054, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37473569

ABSTRACT

Sulfate radical-based advanced oxidation processes (AOPs) combined biological system was a promising technology for treating antibiotic wastewater. However, how pretreatment influence antibiotic resistance genes (ARGs) propagation remains largely elusive, especially the produced by-products (antibiotic residues and sulfate) are often ignored. Herein, we investigated the effects of zero valent iron/persulfate pretreatment on ARGs in bioreactors treating sulfadiazine wastewater. Results showed absolute and relative abundance of ARGs reduced by 59.8%- 81.9% and 9.1%- 52.9% after pretreatments. The effect of 90-min pretreatment was better than that of the 30-min. The ARGs reduction was due to decreased antibiotic residues and stimulated sulfate assimilation. Reduced antibiotic residues was a major factor in ARGs attenuation, which could suppress oxidative stress, inhibit mobile genetic elements emergence and resistant strains proliferation. The presence of sulfate in influent supplemented microbial sulfur sources and facilitated the in-situ synthesis of antioxidant cysteine through sulfate assimilation, which drove ARGs attenuation by alleviating oxidative stress. This is the first detailed analysis about the regulatory mechanism of how sulfate radical-based AOPs mediate in ARGs attenuation, which is expected to provide theoretical basis for solving concerns about by-products and developing practical methods to hinder ARGs propagation.


Subject(s)
Genes, Bacterial , Wastewater , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Sulfates/pharmacology , Bioreactors , Sulfur Oxides/pharmacology
2.
Bioresour Technol ; 216: 653-60, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27289056

ABSTRACT

The study provided a cost-effective and high-efficiency volatile fatty acid (VFA) production strategy by co-fermentation of food waste (FW) and excess sludge (ES) without artificial pH control. VFA production of 867.42mg COD/g-VS was obtained under the optimized condition: FW/ES 5, solid retention time 7d, organic loading rate 9g VS/L-d and temperature 40°C. Mechanism exploration revealed that the holistic biodegradability of substrate was greatly enhanced, and proper pH range (5.2-6.4) was formed by the high buffering capacity of the co-fermentation system itself, which effectively enhanced hydrolysis yield (63.04%) and acidification yield (83.46%) and inhibited methanogenesis. Moreover, microbial community analysis manifested that co-fermentation raised the relative abundances of hydrolytic and acidogenic bacteria including Clostridium, Sporanaerobacter, Tissierella and Bacillus, but suppressed the methanogen Anaerolineae, which also facilitated high VFA production. These results were of great guiding significance aiming for VFA recovery from FW and ES in large-scale.


Subject(s)
Fatty Acids, Volatile/metabolism , Food , Sewage/microbiology , Waste Management/methods , Ammonia/metabolism , Bacteria, Anaerobic/metabolism , Clostridium/metabolism , Fermentation , Hydrogen-Ion Concentration , Hydrolysis , Methane/biosynthesis , Microbial Consortia , Temperature
3.
Bioresour Technol ; 177: 194-203, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25490102

ABSTRACT

An ozone/ultrasound lysis-cryptic growth technology combining a continuous flow anaerobic-anoxic-microaerobic-aerobic (AAMA+O3/US) system was investigated. Techno-economic evaluation and sludge lyses return ratio (r) optimization of this AAMA+O3/US system were systematically and comprehensively discussed. Economic assessment demonstrated that this AAMA+O3/US system with r of 30% (AAMA+O3/US2# system) was more economically feasible that can give a 14.04% saving of costs. In addition to economic benefits, a 55.08% reduction in sludge production, and respective 21.17% and 5.45% increases in TN and TP removal efficiencies were observed in this AAMA+O3/US2# system. Considering the process performances and economic benefits, r of 30% in AAMA+O3/US2# system was recommended. Excitation-emission matrix and Fourier transform infrared spectra analyses also proved that less refractory soluble microbial products were generated from AAMA+O3/US2# system. Improvement in 2,3,5-triphenyltetrazolium chloride electron transport system (TTC-ETS) activity in AAMA+O3/US2# further indicated that a lower sludge lyses return ratio stimulated the microbial activity.


Subject(s)
Organic Chemicals/isolation & purification , Ozone/chemistry , Sewage/chemistry , Ultrasonics/methods , Waste Disposal, Fluid/economics , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/isolation & purification , Aerobiosis , Ammonium Compounds/isolation & purification , Anaerobiosis , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Electron Transport , Nitrogen/isolation & purification , Phosphorus/isolation & purification , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared , Tetrazolium Salts/chemistry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL