Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Phytomedicine ; 126: 155340, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401490

ABSTRACT

BACKGROUND: Fluoxetine is often used as a well-known first-line antidepressant. However, it is accompanied with hepatogenic injury as its main organ toxicity, thereby limiting its application despite its superior efficacy. Fluoxetine is commonly traditionally used combined with some Chinese antidepressant prescriptions containing Rehmannia glutinosa (Dihuang) for depression therapy and hepatoprotection. Our previous experiments showed that co-Dihuang can alleviate fluoxetine-induced liver injury while efficiencies, and catalpol may be the key ingredient to characterize the toxicity-reducing and synergistic effects. However, whether co-catalpol can alleviate fluoxetine-induced liver injury and its toxicity-reducing mechanism remain unclear. PURPOSE: On the basis of the first recognition of the dose and duration at which pre-fluoxetine caused hepatic injury, co-catalpol's alleviation of fluoxetine-induced hepatic injury and its pathway was comprehensively elucidated. METHOD AND RESULTS: The hepatoprotection of co-catalpol was evaluated by serum biochemical indexes sensitive to hepatic injury and multiple staining techniques for hepatic pathologic analysis. Subsequently, the pathway by which catalpol alleviated fluoxetine-induced hepatic injury was predicted by network pharmacology to be predominantly the inhibition of ferroptosis. These were validated and confirmed in subsequent experiments with key technologies and diagnostic reagents related to ferroptosis. Further molecular docking showed that activating transcription factor 3 (ATF3) and ferroptosis suppressor protein 1 (FSP1) were the the most prospective molecules for catalpol and fluoxetine among many ferroptosis-related molecules. The critical role of ATF3/FSP1 signaling was further observed by surface plasmon resonance, diagnostic reagents, transmission electron microscopy, Western blot, real-time PCR, immunofluorescence, and immunohistochemistry. Results showed that fluoxetine directly bound to ATF3 and FSP1; agonisting ATF3 or blocking FSP1 abolished the alleviation of catalpol on fluoxetine-induced liver injury, and both exacerbated ferroptosis. Moreover, co-catalpol significantly enhanced the antidepressant efficacy of fluoxetine against depressive behaviours in mice. CONCLUSION: The hepatic impairment properties of fluoxetine were largely dependent on ATF3/FSP1 target-mediated ferroptosis. Co-catalpol alleviated fluoxetine-induced hepatic injury while enhancing its antidepressant efficacy, and that ATF3/FSP1 signaling-mediated inhibition of ferroptosis was involved in its co-administration detoxification mechanism. This study was the first to reveal the hepatotoxicity characteristics, targets, and mechanisms of fluoxetine; provide a detoxification and efficiency regimen by co-catalpol; and elucidate the detoxification mechanism.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Ferroptosis , Iridoid Glucosides , Mice , Animals , Fluoxetine/pharmacology , Activating Transcription Factor 3 , Molecular Docking Simulation , Prospective Studies , Antidepressive Agents/pharmacology , Cyclic AMP Response Element-Binding Protein
2.
J Ethnopharmacol ; 319(Pt 3): 117372, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37913830

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dioscorea bulbifera L. (Rhizoma Dioscoreae Bulbiferae; RDB) is commonly used as an expectorant and cough suppressant herb but is accompanied by severe hepatotoxicity. Using the juice of auxiliary herbs (such as Glycyrrhiza uralensis Fisch. (Glycyrrhizae Radix et Rhizoma; GRR) juice) in concocting poisonous Chinese medicine is a conventional method to reduce toxicity or increase effects. Our previous study found that concoction with GRR juice provided a detoxifying effect against the major toxic hepatotoxicity induced by RDB, but the principle for the detoxification of the concoction is unknown to date. AIM OF THE STUDY: The principle of concoction was investigated by using the processing excipient GRR juice to reduce the major toxic hepatotoxicity of RDB, and the efficacy of RDB as an expectorant and cough suppressant was enhanced. MATERIALS AND METHODS: In this study, common factors (RDB:GRR ratio, concocted temperature, and concocted time) in the concoction process were used for the preparation of each RDB concocted with GRR juice by using an orthogonal experimental design. We measured the content of the main toxic compound diosbulbin B (DB) and serum biochemical indicators and performed pathological analysis in liver tissues of mice to determine the best detoxification process of RDB concocted with GRR juice. On this basis, the biological mechanisms of target organs were detected by Western blot and enzyme-linked immunosorbent assay at the inflammation and apoptosis levels. Further, the effects of RDB on expectorant and cough suppressant with GRR juice were evaluated by the conventional tests of phenol red expectorant and concentrated ammonia-induced cough. Lastly, the major compounds in the GRR juice introduced to RDB concoction were determined. RESULTS: RDB concocted with GRR juice significantly alleviated DB content, serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase levels, and improved liver pathological damages. The best detoxification process was achieved by using an RDB:GRR ratio of 100:20 at 120 °C for 20 min. Further, RDB concocted with GRR juice down-regulated the protein levels of nuclear factor kappa B (NF-κB), cyclooxygenase 2 (COX-2), and Bcl-2 related X protein (Bax) in the liver and enhanced the expectorant and cough suppressant effects of RDB. Finally, liquiritin (LQ) and glycyrrhizic acid (GA) in the GRR juice were introduced to the RDB concoction. CONCLUSION: Concoction with GRR juice not only effectively reduced the major toxic hepatotoxicity of RDB but also enhanced its main efficacy as an expectorant and cough suppressant, and that the rationale for the detoxification and/or potentiation of RDB was related to the reduction in the content of the main hepatotoxic compound, DB, the introduction of the hepatoprotective active compounds, LQ and GA, in the auxiliary GRR juice, as well as the inhibition of NF-κB/COX-2/Bax signaling-mediated inflammation and apoptosis.


Subject(s)
Antitussive Agents , Chemical and Drug Induced Liver Injury , Dioscorea , Drugs, Chinese Herbal , Glycyrrhiza uralensis , Glycyrrhiza , Mice , Animals , Glycyrrhiza uralensis/chemistry , Expectorants , Antitussive Agents/pharmacology , Excipients , Dioscorea/chemistry , NF-kappa B , Cyclooxygenase 2 , bcl-2-Associated X Protein , Drugs, Chinese Herbal/analysis , Glycyrrhiza/chemistry , Inflammation
3.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5326-5336, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114122

ABSTRACT

For the first time, this study evaluated the gender differences and mechanisms of the antidepressant effects of raw Rehmanniae Radix(RRR) based on the classic depression model with traditional Chinese medicine syndrome of Yin deficiency and internal heat. The depression model with Yin deficiency and internal heat was established by the widely recognized and applied method of thyroxine induction of the classic depression model with Yin deficiency and internal heat(chronic unpredictable mild stress). Male and female mice were simultaneously treated with RRR. The study analyzed indicators of nourishing Yin and clearing heat, conventional antidepressant efficacy test indicators, and important biomolecules reflecting the pathogenesis and prevention and treatment mechanisms of depression, and conducted a correlation analysis of antidepressant efficacy, Yin-nourishing and heat-clearing efficacy, and biological mechanism in different genders, thereby comprehensively assessing the antidepressant effects of RRR on depression of Yin deficiency and internal heat, as well as its gender differences and mechanisms. RRR exhibited antidepressant effects in both male and female mouse models, and its antidepressant efficacy showed gender differences, with a superior effect observed in females. Moreover, the effects of RRR on enhancing or improving hippocampal neuronal pathology, nucleus-positive areas, postsynaptic dense area protein 95, and synaptophysin protein expression were more significant in females than in males. In addition, RRR significantly reversed the abnormal upregulation of nuclear factor(NF)-κB/cyclooxygenase 2(COX2)/NOD-like receptor thermal protein domain associated protein 3(NLRP3) pathway proteins in the hippocampus of both male and female mouse models. The antidepressant effects of RRR were more pronounced in depression female mice with Yin deficiency and internal heat syndrome, possibly due to the improvement of neuronal damage and enhancement of neuroplasticity. The antidepressant mechanisms of RRR for depression with Yin deficiency and internal heat syndrome may be associated with the downregulation of the NF-κB/COX2/NLRP3 pathway to reduce neuronal damage and enhance neuroplasticity.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Yin Deficiency , Male , Female , Mice , Animals , Sex Factors , Cyclooxygenase 2 , NF-kappa B , Antidepressive Agents/pharmacology
4.
Brain Res Bull ; 204: 110796, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37863440

ABSTRACT

Lonicera japonica flos (LJF) is a common clinical herb with outstanding medicinal and nutritional value. This study aimed to evaluate the antidepressant effects of LJF's active extract and compound chlorogenic acid (CGA) around brain-derived neurotrophic factor(BDNF)-tropomyosin receptor kinase B (TrkB) pathway. The results showed that LJF's extracts and CGA had significant antidepressant effects, and the antidepressant effects of different extracts of LJF were highly positively correlated with the content of CGA (forced swimming test, r = 0.998; tail suspension test, r = 0.934). Moreover, LJF-70% ethanolic extract and CGA improved chronic unpredictable mild stress-induced depressive behavior, upregulated protein expression levels of BDNF and p-TrkB in the hippocampus, restored the damage of hippocampal neurons, and protected liver from damage. In summary, this study demonstrated for the first time that LJF-70% ethanolic extract was the active extract of LJF in antidepressant and CGA was its active compound, and the antidepressant mechanisms mainly involved the upregulation of BDNF-TrkB signaling pathway in the hippocampus of mice.


Subject(s)
Chlorogenic Acid , Tropomyosin , Animals , Mice , Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor , Chlorogenic Acid/pharmacology , Hippocampus , Plant Extracts/pharmacology , Receptor, trkB , Tropomyosin/metabolism , Up-Regulation
5.
Medicine (Baltimore) ; 102(39): e35297, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773868

ABSTRACT

This study aims to assess knowledge, attitudes, beliefs, and practices (KABP) among China mainland allergic rhinitis (AR) participants regarding their willingness to use acupuncture. Little is known about the understanding, attitudes, beliefs and practices of people with AR in China. A questionnaire was designed and administered to AR participants in mainland China to gather information about KABP regarding acupuncture use. A total of 324 valid questionnaires were collected from 30 provinces on the Chinese mainland. We recorded basic information and data about AR. The questionnaire designed according to KABP theory and with excellent reliability (Cronbach α coefficient: 0.725) and validity (KMO: 0.819). Knowledge: Fifty-five percent (179) of respondents reported knowing about acupuncture. The majority (172) knew that acupuncture was used for AR; 119 had received acupuncture for AR, and about 66% were aware of acupuncture. Attitudes and beliefs: Seventy percent of patients were willing to recommend acupuncture for AR to family and friends. Practice: Approximately 75% of respondents were willing to undergo acupuncture if they knew it was effective for AR. Approximately 25% of the respondents answered "Do it a few times and see how it works," "Do several treatments depending on how much they can afford," or "It is up to the doctor to decide". Correlation analysis: Those who identified with traditional Chinese medicine showed a robust willingness to recommend acupuncture for treating other diseases to family and friends (R = 0.718, P < .01) and a robust willingness to recommend acupuncture for AR to their families and friends (R = 0.564, P < .01). Acupuncture for AR has shown excellent awareness, recommendation and acceptance in mainland China. Efficacy, affordability, and trust in doctors were the 3 key factors that led respondents to choose acupuncture for their AR. Identification with traditional Chinese medicine culture significantly influenced attitudes, leading to AR recommendations and acceptance of acupuncture.


Subject(s)
Acupuncture Therapy , Rhinitis, Allergic , Humans , Health Knowledge, Attitudes, Practice , Reproducibility of Results , Rhinitis, Allergic/therapy , Medicine, Chinese Traditional
6.
Can J Neurol Sci ; : 1-8, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37642011

ABSTRACT

OBJECTIVE: This study aimed to investigate the characteristics and prognosis of patients with alcoholic Marchiafava-Bignami disease (MBD), a rare neurological disorder commonly associated with chronic alcoholism, in Chongqing, China. METHODS: We conducted a retrospective analysis of clinical data from 21 alcoholic MBD patients treated at the First Affiliated Hospital of Chongqing University between 2012 and 2022. RESULTS: The study included 21 patients with alcoholic MBD who had a mean age of 59 ± 9.86 years and an average drinking history of 35.48 ± 8.65 years. Acute onset was observed in 14 (66.7%) patients. The primary clinical signs observed were psychiatric disorders (66.7%), altered consciousness (61.9%), cognitive disorders (61.9%), and seizures (42.9%). Magnetic resonance imaging revealed long T1 and long T2 signal changes in the corpus callosum, with lesions predominantly found in the genu (76.2%) and splenium (71.4%) of the corpus callosum. The poor prognosis group demonstrated an increased incidence of altered consciousness (100% vs 50%, P = 0.044), pyramidal signs (80% vs 18.8%, P = 0.011), and pneumonia (100% vs 31.3%, P = 0.007). Patients with a longer drinking history (45.0 ± 10.0 years vs 32.69 ± 5.99 years, p = 0.008) and a lower thiamine dose (p = 0.035) had a poorer prognosis at 1 year. CONCLUSIONS: This study identified altered consciousness, pyramidal signs, and pneumonia as predictors of a poor prognosis in patients with alcoholic MBD. A longer duration of alcohol consumption and inadequate thiamine supplementation were associated with a poorer prognosis.

7.
Bioresour Technol ; 385: 129473, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37429550

ABSTRACT

The contribution of inoculum-to-substrate ratios (ISRs) and conductive materials (CMs) on the productivity of anaerobic digestion (AD) remains unclear, particularly for protein-rich organic waste. This study investigated whether the addition of CMs, i.e., biochar and iron powder, can overcome the limitations imposed by varying ISRs for the AD of protein as the sole substrate. Results indicate the ISR plays a decisive role in hydrolysis, acidification, and methanogenesis for protein conversion, irrespective of CMs addition. Methane production increased stepwise as the ISR escalated to 3:1. The addition of CMs provided limited improvement, and iron powder even inhibited methanogenesis at a low ISR. Bacterial community variations were contingent on the ISR, while iron powder supplementation significantly elevates the proportion of hydrogenotrophic methanogen. This study demonstrates that the addition of CMs could affect methanogenic efficiency but can not overcome the limitation of ISRs for the AD of protein.


Subject(s)
Iron , Proteins , Anaerobiosis , Powders , Proteins/metabolism , Methane/metabolism , Bioreactors , Sewage/microbiology
8.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2455-2463, 2023 May.
Article in Chinese | MEDLINE | ID: mdl-37282874

ABSTRACT

This study explored toxicity attenuation processing technology of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction for the first time, and further explored its detoxification mechanism. Nine processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction were prepared by orthogonal experiment with three factors and three levels. Based on the decrease in the content of the main hepatotoxic component diosbulbin B before and after processing of Rhizoma Dioscoreae Bulbiferae by high-performance liquid chromatography, the toxicity attenuation technology was preliminarily screened out. On this basis, the raw and representative processed products of Rhizoma Dioscoreae Bulbiferae were given to mice by gavage with 2 g·kg~(-1)(equival to clinical equivalent dose) for 21 d. The serum and liver tissues were collected after the last administration for 24 h. The serum biochemical indexes reflecting liver function and liver histopathology were combined to further screen out and verify the proces-sing technology. Then, the lipid peroxidation and antioxidant indexes of liver tissue were detected by kit method, and the expressions of NADPH quinone oxidoreductase 1(NQO1) and glutamate-cysteine ligase(GCLM) in mice liver were detected by Western blot to further explore detoxification mechanism. The results showed that the processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction reduced the content of diosbulbin B and improved the liver injury induced by Rhizoma Dioscoreae Bul-biferae to varying degrees, and the processing technology of A_2B_2C_3 reduced the excessive levels of alanine transaminase(ALT) and aspartate transaminase(AST) induced by raw Rhizoma Dioscoreae Bulbiferae by 50.2% and 42.4%, respectively(P<0.01, P<0.01). The processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction reversed the decrease protein expression levels of NQO1 and GCLM in the liver of mice induced by raw Rhizoma Dioscoreae Bulbiferae to varying degrees(P<0.05 or P<0.01), and it also reversed the increasing level of malondialdehyde(MDA) and the decreasing levels of glutathione(GSH), glutathione peroxidase(GPX), and glutathione S-transferase(GST) in the liver of mice(P<0.05 or P<0.01). In summary, this study shows that the optimal toxicity attenuation processing technology of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction is A_2B_2C_3, that is, 10% of Paeoniae Radix Alba decoction is used for moistening Rhizoma Dioscoreae Bulbiferae and processed at 130 ℃ for 11 min. The detoxification mechanism involves enhancing the expression levels of NQO1 and GCLM antio-xidant proteins and related antioxidant enzymes in the liver.


Subject(s)
Drugs, Chinese Herbal , Paeonia , Mice , Animals , Antioxidants/analysis , Plant Extracts/pharmacology , Drugs, Chinese Herbal/chemistry , Rhizome/chemistry , Paeonia/chemistry , Glutathione/analysis
9.
Curr Issues Mol Biol ; 45(5): 4017-4034, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37232725

ABSTRACT

1α,25-Dihydroxyvitamin D3 (VitD3) is the active form of vitamin D, and it regulates gene expression and protein synthesis in mammalian follicle development. However, the function of VitD3 in the follicular development of layers remains unclear. This study investigated, through in vivo and in vitro experiments, the effects of VitD3 on follicle development and steroid hormone biosynthesis in young layers. In vivo, ninety 18-week-old Hy-Line Brown laying hens were randomly divided into three groups for different treatments of VitD3 (0, 10, and 100 µg/kg). VitD3 supplementation promoted follicle development, increasing the number of small yellow follicles (SYFs) and large yellow follicles (LYFs) and the thickness of the granulosa layer (GL) of SYFs. Transcriptome analysis revealed that VitD3 supplementation altered gene expression in the ovarian steroidogenesis, cholesterol metabolism, and glycerolipid metabolism signaling pathways. Steroid hormone-targeted metabolomics profiling identified 20 steroid hormones altered by VitD3 treatment, with 5 being significantly different among the groups. In vitro, it was found that VitD3 increased cell proliferation, promoted cell-cycle progression, regulated the expression of cell-cycle-related genes, and inhibited the apoptosis of granulosa cells from pre-hierarchical follicles (phGCs) and theca cells from prehierarchical follicles (phTCs). In addition, the steroid hormone biosynthesis-related genes, estradiol (E2) and progesterone (P4) concentrations, and vitamin D receptor (VDR) expression level was significantly altered by VitD3. Our findings identified that VitD3 altered the gene expression related to steroid metabolism and the production of testosterone, estradiol, and progesterone in the pre-hierarchical follicles (PHFs), resulting in positive effects on poultry follicular development.

10.
Food Res Int ; 162(Pt A): 111925, 2022 12.
Article in English | MEDLINE | ID: mdl-36461274

ABSTRACT

Patatin is a useful plant protein with excellent gelation properties that could be used as a gelling agent in the food industry. However, the commercial production of patatin is limited because the traditional extraction methods are inefficient and time consuming. Production of patatin with gelation properties by microorganisms is a promising alternative route. In this study, 1424.5 mg/L patatin storage protein with great gelation properties could be obtained in a 5-L bioreactor after optimization of the signal peptide, the promoter, and the fed-batch process when a Pichia pastoris GS115, but not Escherichia coli, expression system was used. Compared with commercial potato-extracted patatins, P. pastoris-derived patatins showed better gelation properties, such as a lower gel-forming concentration and gelation temperature. In addition, the gel strength of P. pastoris-derived patatins was comparable with that of potato-extracted patatins. These results suggested that P. pastoris-derived patatins have the potential to replace current potato-derived ones, which are now widely used in plant-based meat products.


Subject(s)
Saccharomycetales , Solanum tuberosum , Gelatin , Meat , Plant Proteins , Solanum tuberosum/genetics , Excipients , Escherichia coli/genetics
11.
Front Pharmacol ; 13: 960050, 2022.
Article in English | MEDLINE | ID: mdl-36120310

ABSTRACT

American ginseng extract (AGE) is an efficient and low-toxic adjuvant for type 2 diabetes mellitus (T2DM). However, the metabolic mechanisms of AGE against T2DM remain unknown. In this study, a rat model of T2DM was created and administered for 28 days. Their biological (body weight and serum biochemical indicators) and pathological (pancreatic sections stained with HE) information were collected for further pharmacodynamic evaluation. Moreover, an ultra-performance liquid chromatography-mass spectrometry-based (UHPLC-MS/MS-based) untargeted metabolomics method was used to identify potential biomarkers of serum samples from all rats and related metabolic pathways. The results indicated that body weight, fasting blood glucose (FBG), fasting blood insulin (FINS), blood triglyceride concentration (TG), high-density lipoprotein cholesterol (HDL-C), insulin resistance index (HOMA-IR) and insulin sensitivity index (ISI), and impaired islet cells were significantly improved after the high dose of AGE (H_AGE) and metformin treatment. Metabolomics analysis identified 101 potential biomarkers among which 94 metabolites had an obvious callback. These potential biomarkers were mainly enriched in nine metabolic pathways linked to amino acid metabolism and lipid metabolism. Tryptophan metabolism and glutathione metabolism, as differential metabolic pathways between AGE and metformin for treating T2DM, were further explored. Further analysis of the aforementioned results suggested that the anti-T2DM effect of AGE was closely associated with inflammation, oxidative stress, endothelial dysfunction, dyslipidemia, immune response, insulin resistance, insulin secretion, and T2DM-related complications. This study can provide powerful support for the systematic exploration of the mechanism of AGE against T2DM and a basis for the clinical diagnosis of T2DM.

12.
Proc Natl Acad Sci U S A ; 119(30): e2202682119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858430

ABSTRACT

Heterogeneous peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) have shown a great potential for pollutant degradation, but their feasibility for large-scale water treatment application has not been demonstrated. Herein, we develop a facile coprecipitation method for the scalable production (∼10 kg) of the Cu-Fe-Mn spinel oxide (CuFeMnO). Such a catalyst has rich oxygen vacancies and symmetry-breaking sites, which endorse it with a superior PMS-catalytic capacity. We find that the working reactive species and their contributions are highly dependent on the properties of target organic pollutants. For the organics with electron-donating group (e.g., -OH), high-valent metal species are mainly responsible for the pollutant degradation, whereas for the organics with electron-withdrawing group (e.g., -COOH and -NO2), hydroxyl radical (•OH) as the secondary oxidant also plays an important role. We demonstrate that the CuFeMnO-PMS system is able to achieve efficient and stable removal of the pollutants in the secondary effluent from a municipal wastewater plant at both bench and pilot scales. Moreover, we explore the application prospect of this PMS-based AOP process for large-scale wastewater treatment. This work describes an opportunity to scalably prepare robust spinel oxide catalysts for water purification and is beneficial to the practical applications of the heterogeneous PMS-AOPs.


Subject(s)
Aluminum Oxide , Magnesium Oxide , Peroxides , Water Pollutants , Water Purification , Aluminum Oxide/chemistry , Catalysis , Magnesium Oxide/chemistry , Peroxides/chemistry , Water Pollutants/chemistry , Water Purification/methods
13.
Environ Sci Pollut Res Int ; 29(49): 74677-74687, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35641746

ABSTRACT

The configuration and the effective operation of constructed rapid infiltration (CRI) systems are of significance for advanced wastewater treatment. In this study, a novel CRI system was developed with a compact structure consisting of two stages, i.e., oxic and anoxic stages. The CRI system was continuously operated for about 140 days under different aeration modes, i.e., tidal flow, continuous aeration, and intermittent aeration. Nitrogen removal was not desirable with tidal flow due to the insufficient oxygen supply in the oxic stage for nitrification, while continuous aeration could achieve good performance for chemical oxygen demand (COD), ammonium, total nitrogen (TN), and total phosphorus (TP) removal. By comparison, the CRI system operated with intermittent aeration was more favorable due to the effective removal ability for pollutants and relatively lower energy demand. The microbial community analysis revealed that Proteobacteria was the dominant phylum in both oxic and anoxic stages of the developed CRI system. Functional microbial groups (Plasticicumulans, Pseudomonas, and Nitrospira in the oxic stage; Thauera, Candidatus_Competibacter, and Dechloromonas in the anoxic stage) were identified for the mediation of carbon, nitrogen, and phosphorus in the system. This study evaluated the feasibility and the optimal aeration mode of the developed CRI system for advanced wastewater treatment, which could satisfy the requirement for the high standard of effluent quality.


Subject(s)
Ammonium Compounds , Environmental Pollutants , Water Purification , Biological Oxygen Demand Analysis , Bioreactors/microbiology , Carbon , Denitrification , Nitrogen , Oxygen , Phosphorus , Waste Disposal, Fluid , Wastewater/chemistry
14.
Front Endocrinol (Lausanne) ; 13: 1061091, 2022.
Article in English | MEDLINE | ID: mdl-36714595

ABSTRACT

Backgrounds: The pandemic of overweight and obesity (quantified by body mass index (BMI) ≥ 25) has rapidly raised the patient number of non-alcoholic fatty hepatocellular carcinoma (HCC), and several clinical trials have shown that BMI is associated with the prognosis of HCC. However, whether overweight/obesity is an independent prognostic factor is arguable, and the role of overweight/obesity-related metabolisms in the progression of HCC is scarcely known. Materials and methods: In the present study, clinical information, mRNA expression profile, and genomic data were downloaded from The Cancer Genome Atlas (TCGA) as a training cohort (TCGA-HCC) for the identification of overweight/obesity-related transcriptome. Machine learning and the Cox regression analysis were conducted for the construction of the overweight/obesity-associated gene (OAG) signature. The Kaplan-Meier curve, receiver operating characteristic (ROC) curve, and the Cox regression analysis were performed to assess the prognostic value of the OAG signature, which was further validated in two independent retrospective cohorts from the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO). Subsequently, functional enrichment, genomic profiling, and tumor microenvironment (TME) evaluation were utilized to characterize biological activities associated with the OAG signature. GSE109211 and GSE104580 were retrieved to evaluate the underlying response of sorafenib and transcatheter arterial chemoembolization (TACE) treatment, respectively. The Genomics of Drug Sensitivity in Cancer (GDSC) database was employed for the evaluation of chemotherapeutic response. Results: Overweight/obesity-associated transcriptome was mainly involved in metabolic processes and noticeably and markedly correlated with prognosis and TME of HCC. Afterward, a novel established OAG signature (including 17 genes, namely, GAGE2D, PDE6A, GABRR1, DCAF8L1, DPYSL4, SLC6A3, MMP3, RIBC2, KCNH2, HTRA3, PDX1, ATHL1, PRTG, SHC4, C21orf29, SMIM32, and C1orf133) divided patients into high and low OAG score groups with distinct prognosis (median overall survival (OS): 24.87 vs. 83.51 months, p < 0.0001), and the values of area under ROC curve (AUC) in predicting 1-, 2-, 3-, and 4-year OS were 0.81, 0.80, 0.83, and 0.85, respectively. Moreover, the OAG score was independent of clinical features and also exhibited a good ability for prognosis prediction in the ICGC-LIHC-JP cohort and GSE54236 dataset. Expectedly, the OAG score was also highly correlated with metabolic processes, especially oxidative-related signaling pathways. Furthermore, abundant enrichment of chemokines, receptors, MHC molecules, and other immunomodulators as well as PD-L1/PD-1 expression among patients with high OAG scores indicated that they might have better responses to immunotherapy. However, probably exclusion of T cells from infiltrating tumors resulting in lower infiltration of effective T cells would restrict immunotherapeutic effects. In addition, the OAG score was significantly associated with the response of sorafenib and TACE treatment. Conclusions: Overall, this study comprehensively disclosed the relationship between BMI-guided transcriptome and HCC. Moreover, the OAG signature had the potential clinical applications in the future to promote clinical management and precision medicine of HCC.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Obesity , Overweight , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Cyclic Nucleotide Phosphodiesterases, Type 6 , Eye Proteins , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Obesity/complications , Obesity/genetics , Overweight/complications , Overweight/genetics , Retrospective Studies , Serine Endopeptidases , Sorafenib , Transcriptome , Tumor Microenvironment/genetics
15.
Anal Biochem ; 642: 114480, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34813769

ABSTRACT

Shen Gui capsule (SGC) has been demonstrated to have a significant treatment effect for coronary heart disease (CHD). Nevertheless, the holistic therapeutic mechanism of SGC in vivo remain poorly interpreted. We aimed to systematically explore the preventive effect and mechanism of SGC on CHD rats using plasma metabolomics strategy. Rat CHD model was established by left anterior descending coronary artery ligation (LAD). Echocardiography, histological analyses of the myocardium and biochemical assays on serum were used to confirm the successful establishment of the CHD model and therapeutic effects of SGC. Then, UHPLC-MS/MS-based plasma metabolomics was combined with multivariate data analysis to screen potential pharmaco biomarkers associated with SGC treatment in the LAD-induced rat CHD model. After SGC treatment, 12 abnormal metabolites considered as potiential pharmaco biomarkers recovered to near normal levels. These biomarkers were involved in several metabolic pathways, including fat and protein metabolism, phenylalanine metabolism, neuroactive ligand-receptor interaction, androgen receptor signaling pathway, and estrone metabolism.These results suggested that SGC achieves therapeutic action on CHD via regulating various aspects of the body such as energy metabolism, neurological disturbances and inflammation, and thus plays a significant role in the treatment of CHD and its complications. The study is useful to systematically understand and analyze the mechanism of SGC's "multipie pathways, multiple levels, multiple targets" prevention and treatment of CHD.


Subject(s)
Coronary Disease/drug therapy , Disease Models, Animal , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/therapeutic use , Metabolomics , Animals , Capsules , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Multivariate Analysis , Rats , Tandem Mass Spectrometry
16.
Biomed Pharmacother ; 146: 112495, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34891123

ABSTRACT

Red ginseng is a traditional Chinese herbal medicine that has long been used to treat diabetes, and its blood sugar-lowering activity has been confirmed. However, the mechanism of action of red ginseng on type 2 diabetes mellitus (T2DM) at the metabolic level is still unclear. The purpose of this study is to investigate the effect of red ginseng extract in the treatment of T2DM rats based on untargeted metabolomics. The rat model of T2DM was induced by a high-fat diet (HFD) combined with streptozotocin (STZ), and serum samples were collected after four weeks of treatment. The ultra-high-performance liquid chromatography coupled with Q Exactive HF-X Mass Spectrometer was used to analyze the level of metabolites in serum to evaluate the differences in metabolic levels between different groups. The results of biochemical analysis showed that red ginseng extract intervention significantly improved the levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), serum glucose (GLU), and fasting insulin (FINS) after four weeks. Orthogonal partial least squares discriminant analysis was used to study the overall changes of rat metabolomics. After the intervention of red ginseng extract, 50 biomarkers showed a callback trend. Metabolic pathway enrichment analysis showed that the regulated pathways were D-arginine and D-ornithine metabolism, D-glutamine and D-glutamate metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Generally, the results demonstrated that red ginseng extract had beneficial effects on T2DM, which could be mediated via ameliorating the metabolic disorders.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Panax , Plant Extracts/therapeutic use , Amino Acids/metabolism , Animals , Biomarkers/blood , Chromatography, High Pressure Liquid , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Hypoglycemic Agents/pharmacology , Lipid Metabolism , Male , Metabolic Networks and Pathways/drug effects , Metabolomics , Pancreas/drug effects , Pancreas/pathology , Phytotherapy , Plant Extracts/pharmacology , Rats, Sprague-Dawley , Tandem Mass Spectrometry
17.
Neuroscience ; 473: 102-118, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34358633

ABSTRACT

Depression has huge social risks of high incidence, disability, and suicide. Its prevalence and harm in people with hyperglycemia are 2-3 times higher than in normal people. However, antidepressants with precise curative effects and clear mechanisms for patients with hyperglycemia are currently lacking. Prescriptions containing Radix Rehmannia glutinosa Libosch., a traditional medicinal herb with a wide range of nutritional and medicinal values, are often used as antidepressants in Chinese clinical medicine. Catalpol is one of the main effective compounds of Radix R. glutinosa, with multiple biological activities such as hypoglycemia. Here, the antidepressant effect of catalpol on the pathological state of streptozotocin (STZ)-induced hyperglycemia and the underlying molecular mechanisms were analyzed. Results showed that administering catalpol orally to hyperglycemic mice for 21 consecutive days significantly reversed the abnormalities in tail suspension, forced swimming, and open field tests. Catalpol also reversed the abnormal phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) and the abnormal levels of nuclear factor erythroid 2-related factor 2 (Nrf2) protein, heme oxygenase-1 (HO-1), and antioxidants, including superoxide dismutase, glutathione peroxidase, glutathione-s transferase, reduced glutathione, and malondialdehyde in the hippocampus and frontal cortex of STZ-induced hyperglycemic mice. Thus, catalpol attenuates depressive-like behavior in pathological hyperglycemic state, and the antidepressant mechanism could at least be partly attributed to the upregulation of the PI3K/AKT/Nrf2/HO-1 signaling pathway in both brain regions, thus restoring the balance between oxidative and antioxidant damage. These data expanded the scientific understanding of catalpol and provided preclinical experimental evidence for its application.


Subject(s)
Hyperglycemia , Phosphatidylinositol 3-Kinase , Animals , Heme Oxygenase-1/metabolism , Humans , Hyperglycemia/drug therapy , Iridoid Glucosides , Mice , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Streptozocin/toxicity
18.
Eur J Pharmacol ; 909: 174396, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34332921

ABSTRACT

Catalpol is a major compound in Rehmanniae Radix with outstanding medicinal and nutritional values. Our previous studies have demonstrated catalpol's antidepressant effect, but its mechanisms remain unclear. This study aimed to explore the antidepressant mechanisms of catalpol via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1 (HO-1) pathway. Results demonstrated that chronic unpredictable mild stress (CUMS) for 5 consecutive weeks caused significant decreases in the sucrose preference and the horizontal and vertical scores of open-field test, as well as a significant increase in the swimming-immobility time of rats; catalpol administration significantly reversed the abnormality of these indicators. Further real-time fluorescent quantitative polymerase chain reaction and Western blotting results together showed that CUMS significantly downregulated the expression levels of hippocampal genes and proteins, including PI3K, Akt, Nrf2, HO-1, tropomyosin-related kinase B (TrkB), and brain-derived neurotrophic factor; catalpol administration significantly reversed the abnormal expression of these genes and proteins. CUMS also caused a significant decrease in the hippocampal superoxide dismutase, catalase, glutathione peroxidase, glutathione-s transferase, and reduced glutathione levels, as well as a significant increase in thiobarbituric acid reactive substances level in rats; catalpol administration significantly reversed the abnormality of these indicators. Taken together, this study confirmed for the first time that the antidepressant effect of catalpol on CUMS-induced depression involved the upregulation of the PI3K/Akt/Nrf2/HO-1 signaling pathway, thereby improving the hippocampal neurotrophic, neuroprotective, and antioxidant levels. The PI3K/Akt/Nrf2/HO-1 pathway-related molecules may serve as potential new biomarkers and candidate molecular targets for catalpol's antidepressant effects.


Subject(s)
Antidepressive Agents/pharmacology , Depression/drug therapy , Drugs, Chinese Herbal/pharmacology , Hippocampus/drug effects , Iridoid Glucosides/pharmacology , Animals , Antidepressive Agents/therapeutic use , Depression/diagnosis , Depression/etiology , Depression/pathology , Disease Models, Animal , Drug Evaluation, Preclinical , Drugs, Chinese Herbal/therapeutic use , Heme Oxygenase (Decyclizing)/metabolism , Hippocampus/pathology , Humans , Iridoid Glucosides/therapeutic use , Lipid Peroxidation/drug effects , Male , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction/drug effects , Stress, Psychological/complications
19.
Heliyon ; 7(4): e06735, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33997368

ABSTRACT

Codonopsis Radix is a traditional Chinese medicine best known for its effects in treating digestive, cardiovascular, immunological and hematopoitic diseases. It also appears in the traditional Chinese medical prescriptions against ascites. However, the physiological effect and molecular mechanism of Codonopsis Radix in water and electrolytes homeostasis have not been well studied. We found that Codonopsis Radix decoction increased water intake and the urine volume, but decreased food intake in mice. The treatment significantly reduced angiotensin II receptor (AT1R) transcription and serum aldosterone level in animals, suggested perturbed function of renin-angiotensin system. RNAseq analysis of Codonopsis Radix treated NCI-H295R cells detected suppressed AT1R, SP1, and TEF transcription as well. Thus, Codonopsis Radix may regulate water and electrolytes homeostasis by affecting AT1R expression and aldosterone biosynthesis, possibly through downregulating SP1 and TEF transcription.

20.
Front Pharmacol ; 12: 650438, 2021.
Article in English | MEDLINE | ID: mdl-33867992

ABSTRACT

Background: Guan-Xin-Shu-Tong capsule (GXSTC) is a traditional Chinese medicine (TCM) that has been used to treat coronary heart disease (CHD) for many years in China. However, the holistic mechanism of GXSTC against CHD is still unclear. Therefore, the purpose of this paper was to systematically explore the mechanism of action GXSTC in the treatment of CHD rats using a metabolomics strategy. Methods: A CHD model was induced by ligation of the left anterior descending coronary artery (LAD). In each group, echocardiography was performed; the contents of creatine kinase (CK), lactate dehydrogenase (LDH) and aspartate transaminase (AST) in serum were determined; and the myocardial infarct size was measured. The metabolites in plasma were analyzed by UHPLC-MS/MS-based untargeted metabolomics. Then, multivariate statistical analysis was performed to screen potential biomarkers associated with the GXSTC treatment in the LAD-induced rat CHD model. Finally, the MetaboAnalyst 4.0 platform was used for metabolic pathway enrichment analysis. Results: GXSTC was able to regulate the contents of CK, LDH and AST; restore impaired cardiac function; and significantly reduce the myocardial infarction area in model rats. Twenty-two biomarkers and nine metabolic pathways of GXSTC in the treatment of CHD were identified through UHPLC-MS/MS-based untargeted metabolomics analysis. Conclusion: GXSTC regulates metabolic disorders of endogenous components in LAD-induced CHD rats. The anti-CHD mechanism of GXSTC is mainly related to the regulation of amino acid, lipid and hormonal metabolism. This study provides an overall view of the mechanism underlying the action of GXSTC against CHD.

SELECTION OF CITATIONS
SEARCH DETAIL