Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sci Rep ; 14(1): 1012, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200035

ABSTRACT

To explore the effects of foot reflexology massage on anxiety, pain, duration of labor, labor satisfaction, blood pressure, pulse rate and respiratory rate in pregnant women. We systematically searched eight databases for randomized controlled studies on the effects of foot reflexology massage on pregnant women. The inclusion criteria were as follow: participants were pregnant woman; the intervention is foot reflexology or foot massage; the control intervention is placebo, usual care, or no intervention; outcome indicators included pain, anxiety, birth satisfaction, duration of labor, blood pressure, pulse, and respiration; and study type was randomized controlled study. Studies that did not meet the above requirements were excluded. We assessed the quality of the included studies using the Physiotherapy Evidence Database scale, the risk of bias using the Risk of Bias 2.0 tool, and the level of evidence for the outcomes using the Grading of Recommendations Assessment Development and Evaluation. We used Review Manager 5.3 for data analysis and generated funnel plots to assess publication bias. In addition, sensitivity analysis was used to test the stability of the results. A total of 13 randomized controlled studies with 1189 participants were included in this study. Compared to the control group, foot reflexology massage reduced anxiety and pain in pregnant women, shortened the three stages of labor, and increased birth satisfaction. In addition, it also reduced the pulse rate and respiratory rate of pregnant women, but not for blood pressure. Foot reflexology massage can significantly reduce anxiety and pain, shorten the duration of labor, increase birth satisfaction, and stabilize vital signs in pregnant women. It is a safe and non-invasive form of complementary therapy.PROSPERO registered number: CRD42022359641. URL: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=359641 .


Subject(s)
Musculoskeletal Manipulations , Pregnant Women , Pregnancy , Female , Humans , Foot , Massage , Pain , Randomized Controlled Trials as Topic
2.
Phytomedicine ; 123: 155201, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37976693

ABSTRACT

BACKGROUND: Astragali Radix (AR) is a widely used herbal medicine. The quality of AR is influenced by several key factors, including the production area, growth mode, species, and grade. However, the markers currently used to distinguish these factors primarily focus on secondary metabolites, and their validation on large-scale samples is lacking. PURPOSE: This study aims to discover reliable markers and develop classification models for identifying the production area, growth mode, species, and grade of AR. METHODS: A total of 366 batches of AR crude slices were collected from six provinces in China and divided into learning (n = 191) and validation (n = 175) sets. Three ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods were developed and validated for determining 22 primary and 10 secondary metabolites in AR methanol extract. Based on the quantification data, seven machine learning algorithms, such as Nearest Neighbors and Gradient Boosted Trees, were applied to screen the potential markers and build the classification models for identifying the four factors associated with AR quality. RESULTS: Our analysis revealed that secondary metabolites (e.g., astragaloside IV, calycosin-7-O-ß-D-glucoside, and ononin) played a crucial role in evaluating AR quality, particularly in identifying the production area and species. Additionally, fatty acids (e.g., behenic acid and lignoceric acid) were vital in determining the growth mode of AR, while amino acids (e.g., alanine and phenylalanine) were helpful in distinguishing different grades. With both primary and secondary metabolites, the Nearest Neighbors algorithm-based model was constructed for identifying each factor of AR, achieving good classification accuracy (>70%) on the validation set. Furthermore, a panel of four metabolites including ononin, astragaloside II, pentadecanoic acid, and alanine, allowed for simultaneous identification of all four factors of AR, offering an accuracy of 86.9%. CONCLUSION: Our findings highlight the potential of integrating large-scale targeted metabolomics and machine learning approaches to accurately identify the quality-associated factors of AR. This study opens up possibilities for enhancing the evaluation of other herbal medicines through similar methodologies, and further exploration in this area is warranted.


Subject(s)
Astragalus Plant , Drugs, Chinese Herbal , Drugs, Chinese Herbal/pharmacology , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Astragalus propinquus/chemistry , Tandem Mass Spectrometry/methods , Alanine
3.
Eur J Clin Nutr ; 78(1): 6-18, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37740067

ABSTRACT

To investigate the effects of rapeseed oil on body composition, blood glucose and lipid metabolism in people with overweight and obesity compared to other cooking oils. We searched eight databases for randomized controlled studies (including randomized crossover trials). The risk of bias for the included studies was assessed using the Cochrane Risk of Bias 2.0 tool. The Grading of Recommendations Assessment Development and Evaluation (GRADE) criteria were used to evaluate the quality of the outcomes. The methodological quality of the included studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. Sensitivity analysis was used to check the stability of the pooled results. Statistical analysis was carried out using Review Manager 5.3 software. As a result, fifteen randomized controlled studies (including six parallel studies and nine crossover studies) were included in this study. Compared to other edible oils, rapeseed oil significantly reduced low density lipoprotein cholesterol (LDL-C) (MD = -0.14 mmol/L, 95% CI: -0.21, -0.08, I2 = 0%, P < 0.0001), apolipoprotein B (ApoB) (MD = -0.03 g/L, 95% CI: -0.05, -0.01, I2 = 0%, P = 0.0003), ApoB/ApoA1 (MD = -0.02, 95% CI: -0.04, -0.00, I2 = 0%, P = 0.02) and insulin (MD = -12.45 pmol/L, 95% CI: -19.61, -5.29, I2 = 37%, P = 0.0007) levels, and increased fasting glucose (MD = 0.16 mmol/L, 95% CI: 0.05, 0.27, I2 = 27%, P = 0.003) levels. However, the differences in body weight and body composition between rapeseed oil and control oils were not significant. In a word, rapeseed oil is effective in reducing LDL-C, ApoB and ApoB/ApoA1 levels in people with overweight and obesity, which is helpful in preventing and reducing the risk of atherosclerosis. PROSPERO registration number: CRD42022333436.


Subject(s)
Obesity , Overweight , Humans , Rapeseed Oil , Cholesterol, LDL , Body Composition , Apolipoproteins B
4.
J Ethnopharmacol ; 251: 112550, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-31918015

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Isatidis Radix, the sun-dried roots of Isatis indigotica Fortune ex Lindl., is one of the most usually used traditional Chinese medicines. For centuries, the herb has been employed in clinical practice for treatment of virus infection and inflammation. However, its active ingredients remain unclear. AIM OF THE STUDY: In the present study, the anti-influenza virus activity of epiprogoitrin, progoitrin, epigoitrin and goitrin, the Isatidis Radix derived glucosinolate isomers and their breakdown products, was firstly evaluated in vitro and in ovo and their mechanism of action was investigated. MATERIALS AND METHODS: Epiprogoitrin, progoitrin, epigoitrin and goitrin were isolated from Isatidis Radix by chiral separation. In vitro and in ovo evaluations were performed on Madin-Darby canine kidney (MDCK) cells and embryonated eggs respectively, both using protocols including prevention, treatment and virus neutralization. Hemagglutination (HA) and neuraminidase (NA) inhibition assays were performed for further understanding of the antiviral mechanism. RESULTS: Isatidis Radix derived glucosinolate isomers and their breakdown products all exhibited dose-dependent inhibition effect against influenza A virus (H1N1) without toxicity. The antiviral potency of the components was in the order of progoitrin > goitrin > epigoitrin > epiprogoitrin. The attachment of the constituents to the viral envelope conduced to the mechanism of their antiviral action without disturbing viral adsorption or budding. CONCLUSION: Taken together, these results are promising for further development of Isatidis Radix and may contribute an adjunct to pharmacotherapy for influenza virus infection.


Subject(s)
Antiviral Agents/pharmacology , Glucosinolates/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Isatis , Oxazolidinones/pharmacology , Animals , Cell Survival/drug effects , Chick Embryo/virology , Dogs , Hemagglutination Tests , Madin Darby Canine Kidney Cells , Neuraminidase/antagonists & inhibitors , Plant Roots
5.
Environ Sci Pollut Res Int ; 25(1): 693-703, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29063391

ABSTRACT

Efficient oxidative degradation of pharmaceutical pollutants in aquatic environments is of great importance. This study used magnetic BiOCl@Fe3O4 catalyst to activate persulfate (PS) under simulated solar light irradiation. This degradation system was evaluated using atenolol (ATL) as target pollutant. Four reactive species were identified in the sunlight/BiOCl@Fe3O4/PS system. The decreasing order of the contribution of each reactive species on ATL degradation was as follows: h+ ≈ HO· > O2·- > SO4·-. pH significantly influenced ATL degradation, and an acidic condition favored the reaction. High degradation efficiencies were obtained at pH 2.3-5.5. ATL degradation rate increased with increased catalyst and PS contents. Moreover, ATL mineralization was higher in the sunlight/BiOCl@Fe3O4/PS system than in the sunlight/BiOCl@Fe3O4 or sunlight/PS system. Nine possible intermediate products were identified through LC-MS analysis, and a degradation pathway for ATL was proposed. The BiOCl@Fe3O4 nanomagnetic composite catalyst was synthesized in this work. This catalyst was easily separated and recovered from a treated solution by using a magnet, and it demonstrated a high catalytic activity. Increased amount of the BiOCl@Fe3O4 catalyst obviously accelerated the efficiency of ATL degradation, and the reusability of the catalyst allowed the addition of a large dosage of BiOCl@Fe3O4 to improve the degradation efficiency.


Subject(s)
Atenolol/analysis , Bismuth/chemistry , Magnetite Nanoparticles/chemistry , Sodium Compounds/chemistry , Sulfates/chemistry , Sunlight , Water Pollutants, Chemical/analysis , Water Purification/methods , Atenolol/radiation effects , Catalysis , Oxidation-Reduction , Water Pollutants, Chemical/radiation effects
6.
BMC Complement Altern Med ; 14: 198, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24952587

ABSTRACT

BACKGROUND: Tangzhiqing fomula (TZQ-F), the mixture of Red Paeony root, Mulberry leaf, Lotus leaf, Danshen root and Hawthorn leaf, regulates the abnormal glucose and lipids in prediabetic patients. In this study, we focus on the mechanism of TZQ-F and its fractions on glucose metabolism. METHODS: After orally administration of TZQ-F for 4 weeks in KK-Ay mice, we dissected out the liver and muscle, and employed PCR and western blotting to screening the PI3K/AKT pathway. The following PI3K/AKT signaling pathway were performed in L-6 myotube and HepG2 cells. RESULTS: In the liver of KK-Ay mice, no significance was observed on PI3K, AKT and their phosphorylation between TZQ-F and controls , while, in the muscle, up-regulation of PI3K, AKT, Glycogen synthase (GYS) and their phosphorylation type, as well as GluT4, was deteced in TZQ-F. In HepG2 cells, TZQ-F increased IRS-2 by 10 folds, without interrupting AKT, IRS-1 and GluT4. In L-6 myotube cells, TZQ-F and its fractions treatment significantly increased IRS-1 and AKT at mRNA level. CONCLUSION: TZQ-F prevents pre-diabetes through increasing effect on IRS-1-dependent PI3K/AKT signaling pathway in muscle.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Insulin Receptor Substrate Proteins/metabolism , Muscles/drug effects , Muscles/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Animals , Cell Line , Enzyme Activation/drug effects , Female , Gene Expression/drug effects , Glucose Transporter Type 4/metabolism , Glycogen Synthase/metabolism , Hep G2 Cells , Humans , Hypoglycemic Agents/pharmacology , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Rats , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL