Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Spine (Phila Pa 1976) ; 49(4): 221-231, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37871182

ABSTRACT

STUDY DESIGN: Cross-sectional and retrospective cohort study. OBJECTIVE: We investigated the effect of 3 types of short stature [partial growth hormone deficiency (GHD), GHD, and idiopathic short stature (ISS)] and recombinant human growth hormone (rhGH) therapy on scoliosis. SUMMARY OF BACKGROUND DATA: In short stature, rhGH is widely used and the concentration of growth hormone varies among types. The epidemiologic characteristics of scoliosis and the role of rhGH in scoliosis remain unclear. PATIENTS AND METHODS: A cross-sectional study was conducted among 3896 patients with short stature (partial GHD, GHD, and ISS), and a 1:1 age and sex-matched control group with preexisting whole-spine radiographs. The cohort study included 2605 subjects who underwent radiography more than twice to assess scoliosis development, progression, and the need for bracing and surgery. Adjusted logistic regression was used to assess differences in the prevalence of scoliosis among patients with partial GHD, GHD, ISS, and controls. The Kaplan-Meier method was used to analyze the time course of scoliosis development and progression. Cox regression was applied to assess the independent factors related to scoliosis development and progression. Mendelian randomization analyses were also performed. RESULTS: Compared with controls, patients with short stature had a higher incidence of scoliosis (34.47% in partial GHD, 31.85% in GHD, 32.94% in ISS vs . 8.83% in control, P < 0.001), a higher risk of scoliosis development [hazard ratio (HR) = 1.964 in partial GHD, P < 0.001; HR = 1.881 in GHD, P = 0.001; HR = 1.706 in ISS, P = 0.001), but not a higher risk of progression, brace, or surgery. Among the 3 types of short stature, there were no differences in the incidence, development, and progression of scoliosis or the need for bracing or surgery. RhGH treatment increased the risk of scoliosis development in each short-stature group (HR = 2.673 in partial GHD, P < 0.001; HR = 1.924 in GHD, P = 0.049; HR = 1.564 in ISS, P = 0.004). Vitamin D supplementation was protective against scoliosis development (HR = 0.456 in partial GHD, P = 0.003; HR = 0.42 in GHD, P = 0.013; HR = 0.838 in ISS, P = 0.257). CONCLUSIONS: More attention should be paid to the spinal curve in patients with partial GHD, GHD, or ISS. For short stature treated with rhGH, the risk of scoliosis development was increased. Vitamin D supplementation may be beneficial for prevention. LEVEL OF EVIDENCE: Level III.


Subject(s)
Dwarfism, Pituitary , Human Growth Hormone , Scoliosis , Humans , Human Growth Hormone/pharmacology , Growth Hormone/pharmacology , Cross-Sectional Studies , Cohort Studies , Retrospective Studies , Vitamin D , Body Height
2.
Phytother Res ; 35(10): 5694-5707, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34423505

ABSTRACT

Morin is a natural compound isolated from moraceae family members and has been reported to possess a range of pharmacological activities. However, the effects of morin on bone-associated disorders and the potential mechanism remain unknown. In this study, we investigated the anti-osteoclastogenic effect of morin in vitro and the potential therapeutic effects on ovariectomy (OVX)-induced osteoporosis in vivo. In vitro, by using a bone marrow macrophage-derived osteoclast culture system, we determined that morin attenuated receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced osteoclast formation via the inhibition of the mitogen-activated protein kinase (MAPK), NF-κB and calcium pathways. In addition, the subsequent expression of nuclear factor of activated T cells c1 (NFATc1) and c-fos was significantly suppressed by morin. In addition, NFATc1 downregulation led to the reduced expression of osteoclastogenesis-related marker genes, such as V-ATPase-d2 and Integrin ß3. In vivo, results provided that morin could effectively attenuate OVX-induced bone loss in C57BL/6 mice. In conclusion, our results demonstrated that morin suppressed RANKL-induced osteoclastogenesis via the NF-κB, MAPK and calcium pathways, in addition, its function of preventing OVX-induced bone loss in vivo, which suggested that morin may be a potential therapeutic agent for postmenopausal osteoporosis treatment.


Subject(s)
Bone Resorption , Osteoclasts , Animals , Calcium , Cell Differentiation , Female , Flavonoids , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases , NF-kappa B , NFATC Transcription Factors , Osteogenesis , RANK Ligand
3.
Phytother Res ; 35(7): 3848-3860, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33792992

ABSTRACT

Random skin flap is widely used in plastic surgery. However, flap necrosis caused by ischemia-reperfusion injury limits its clinical applications. Apigenin, a naturally occurring flavonoid mainly derived from plants, facilitates flap survival. In this study, we explored the effects of apigenin on flap survival and the underlying mechanisms. A total of 54 mice having a dorsal random flap model were randomly divided into control, apigenin, and apigenin +3-methyladenine groups. These groups were treated with dimethyl sulfoxide solution, apigenin, and apigenin +3-methyladenine, respectively. The animals were then euthanized to assess angiogenesis, apoptosis, oxidative stress, and autophagy levels through histological and protein analyses. Apigenin promotes survival of the skin flap area and reduces tissue edema. In addition, apigenin enhanced angiogenesis, attenuated apoptosis, alleviated oxidative stress, and activated autophagy. Interestingly, 3-methyladenine reversed the effects of apigenin on flap survival, angiogenesis, apoptosis, and oxidative stress through inhibition of autophagy. The findings of this study show that apigenin promotes angiogenesis, inhibits cell apoptosis, and lowers oxidative stress by mediating autophagy, thus the improving survival rate of random skin flaps.


Subject(s)
Apigenin , Autophagy , Graft Survival/drug effects , Skin , Surgical Flaps , Angiogenesis Inducing Agents , Animals , Apigenin/pharmacology , Apoptosis/drug effects , Mice , Oxidative Stress , Skin/metabolism
4.
Am J Chin Med ; 45(7): 1459-1475, 2017.
Article in English | MEDLINE | ID: mdl-28946765

ABSTRACT

Microglial activation leads to increased production of proinflammatory enzymes and cytokines, which is considered to play crucial role in neurodegenerative diseases, however there are only a few drugs that target microglia activation. Recent studies have indicated that the Traditional Chinese Medicine, salidroside (Sal), exerted anti-inflammatory effects. According to this evidence, our present study aims to explore the effect of the Sal (a phenylpropanoid glycoside compound which is isolated from rhodiola), on microglia activation in lipopolysaccharide (LPS)-stimulated BV-2 cells. Our results showed that Sal could significantly inhibit the excessive production of Nitric Oxide (NO) and Prostaglandin E2 (PGE2) in LPS-stimulated BV2 cells. Moreover, Sal treatment could suppress the mRNA and protein expressions of inflammatory enzymes, including Inducible Nitric Oxide Synthase (iNOS) and Cyclooxygenase-2 (COX-2). The mechanisms may be related to the inhibition of the activation of Nuclear Factor-kappaB (NF-[Formula: see text]B) and endoplasmic reticulum stress. Our study demonstrated that salidroside could inhibit lipopolysaccharide-induced microglia activation via the inhibition of the NF-[Formula: see text]B pathway and endoplasmic reticulum stress, which makes it a promising therapeutic agent for human neurodegenerative diseases.


Subject(s)
Anti-Inflammatory Agents , Endoplasmic Reticulum Stress/drug effects , Glucosides/pharmacology , Glucosides/therapeutic use , Microglia/pathology , NF-kappa B/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/pathology , Phenols/pharmacology , Phenols/therapeutic use , Phytotherapy , Signal Transduction/drug effects , Animals , Cells, Cultured , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Inflammation Mediators/metabolism , Mice , Neurodegenerative Diseases/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL