Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Biol Pharm Bull ; 47(1): 292-302, 2024.
Article in English | MEDLINE | ID: mdl-38281773

ABSTRACT

Staphylococcus aureus (SAU) stands as the prevailing pathogen in post-traumatic infections, with the emergence of antibiotic resistance presenting formidable treatment hurdles. The pressing need is to explore novel antibiotics to address this challenge. ShangKeHuangShui (SKHS), a patented traditional Chinese herbal formula, has gained widespread use in averting post-traumatic infections, but its biological effects remain incomplete understanding. This study's primary objective was to delve into the antibacterial properties, potential antibacterial compounds within SKHS, and their associated molecular targets. In vitro SKHS antibacterial assays demonstrated that the minimum inhibitory concentration (MIC) was 8.625 mg/mL and the minimum bactericide concentration (MBC) was 17.25 mg/mL. Proteomic analysis based on tandem mass tag (TMT) showed significant changes in the expression level of 246 proteins in SKHS treated group compared to control group, with 79 proteins upregulated and 167 proteins downregulated (>1.5-fold, p < 0.05). Subsequently, thirteen target proteins related to various biological processes and multiple metabolic pathways were selected to conduct parallel reaction monitoring (PRM) and molecular docking screen. In protein tyrosine phosphatase PtpA (ptpA) docking screening, phellodendrine and obacunone can bind to ptpA with the binding energy of - 8.4 and - 8.3 kcal/mol, respectively. This suggests their potential impact on antibacterial activity by modulating the two-component system of SAU. The discovery lays a groundwork for future research endeavors for exploring new antibacterial candidates and elucidating specific active chemical components within SKHS that match target proteins. Further investigations are imperative to unveil the biological effects of these monomers and their potential synergistic actions.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Proteomics , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
2.
Phytomedicine ; 118: 154939, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37354697

ABSTRACT

BACKGROUND AND PURPOSE: Fatty acid binding protein 4 (FABP4) has been identified as a contributor to cartilage degradation in osteoarthritis (OA) patients, and inhibiting FABP4 using small molecules has emerged as a promising approach for developing OA drugs. Our previous research showed that Andrographis paniculata, a medicinal plant, strongly inhibits FABP4 activity. This led us to hypothesize that Andrographis paniculata ingredients might have protective effects on OA cartilage through FABP4 inhibition. METHODS: We analyzed scRNA-seq data from joint tissue of OA patients (GSE152805; GSE145286) using Scanpy 1.9.1 and Single Cell Portal. We conducted docking analysis of FABP4 inhibitors using Autodock Vina v.1.0.2. We evaluated the anti-FABP4 activity using a fluorescence displacement assay and measured the fatty acid oxidation (FAO) activity using the FAOBlue assay. We used H2DCF-DA to measure reactive oxygen species (ROS) levels. We studied signaling pathways using bulk RNA sequencing and western blot analysis in human C28/I2 chondrocytes. We evaluated anti-OA activity in monosodium iodoacetate (MIA)-induced rats. RESULTS: We identified Andrographolide (AP) as a novel FABP4 inhibitor. Bulk RNA-sequencing analysis revealed that FABP4 upregulated FAO and ROS in chondrocytes, which was inhibited by AP. ROS generation activated the NF-κB pathway, leading to overexpression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4), which is a responsible factor for cartilage degradation in OA patients. AP inhibited FABP4, thereby reducing the overexpression of ADAMTS4 by inhibiting the NF-κB pathway. In MIA rats, AP treatment reduced the overexpression of ADAMTS4, repaired cartilage and subchondral bone, and promoted cartilage regeneration. CONCLUSION: Our results indicate that the inhibition of FABP4 activity by AP explains the anti-OA properties of Andrographis paniculata by protecting against cartilage degradation in OA patients. Additionally, our findings suggest that AP may be a promising therapeutic agent for OA treatment due to its ability to alleviate cartilage damage and bone erosion.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Rats , Animals , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Osteoarthritis/metabolism , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL