Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Endocrinology ; 156(8): 2843-53, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26046806

ABSTRACT

Glucocorticoids act rapidly at the paraventricular nucleus (PVN) to inhibit stress-excitatory neurons and limit excessive glucocorticoid secretion. The signaling mechanism underlying rapid feedback inhibition remains to be determined. The present study was designed to test the hypothesis that the canonical glucocorticoid receptors (GRs) is required for appropriate hypothalamic-pituitary-adrenal (HPA) axis regulation. Local PVN GR knockdown (KD) was achieved by breeding homozygous floxed GR mice with Sim1-cre recombinase transgenic mice. This genetic approach created mice with a KD of GR primarily confined to hypothalamic cell groups, including the PVN, sparing GR expression in other HPA axis limbic regulatory regions, and the pituitary. There were no differences in circadian nadir and peak corticosterone concentrations between male PVN GR KD mice and male littermate controls. However, reduction of PVN GR increased ACTH and corticosterone responses to acute, but not chronic stress, indicating that PVN GR is critical for limiting neuroendocrine responses to acute stress in males. Loss of PVN GR induced an opposite neuroendocrine phenotype in females, characterized by increased circadian nadir corticosterone levels and suppressed ACTH responses to acute restraint stress, without a concomitant change in corticosterone responses under acute or chronic stress conditions. PVN GR deletion had no effect on depression-like behavior in either sex in the forced swim test. Overall, these findings reveal pronounced sex differences in the PVN GR dependence of acute stress feedback regulation of HPA axis function. In addition, these data further indicate that glucocorticoid control of HPA axis responses after chronic stress operates via a PVN-independent mechanism.


Subject(s)
Gene Deletion , Hypothalamus/metabolism , Neurosecretory Systems/physiology , Receptors, Glucocorticoid/genetics , Animals , Circadian Rhythm/genetics , Feedback, Physiological , Female , Gene Knockdown Techniques , Hypothalamo-Hypophyseal System/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pituitary-Adrenal System/physiology , Receptors, Glucocorticoid/metabolism , Stress, Psychological/genetics , Stress, Psychological/metabolism
2.
Psychoneuroendocrinology ; 35(7): 1100-12, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20149549

ABSTRACT

Glucocorticoid dyshomeostasis is observed in a proportion of depressed individuals. As a result, glucocorticoid receptor (GR) antagonists are currently being tested as potential anti-depressants. The current study was designed to test the efficacy of mifepristone, a GR antagonist, in mitigating behavioral, neuroendocrine and central nervous system (CNS) responses to an acute stressor. Adult male rats were treated for 5 days with mifepristone (10 mg/kg) and then exposed to the forced swim test (FST). Treatment with mifepristone decreased immobility and increased swimming (but not climbing) behavior in the FST, consistent with anti-depressant action. In addition, mifepristone dampened the ACTH response to FST exposure. In the CNS, mifepristone increased c-Fos expression in all subdivisions of the medial prefrontal cortex (mPFC) and decreased neuronal activity in some subdivisions of the hippocampus including the CA2, CA3, and hilus region of the dentate gyrus in animals exposed to FST. In contrast, mifepristone increased neuronal activity in the ventral subiculum (output region of the hippocampus) and decreased c-Fos expression in the central amygdala (CeA) in animals exposed to FST. These data suggest that anti-depressant efficacy and perhaps HPA dampening properties of RU486 are related to alterations in key limbic circuits mediating CNS stress responses, resulting in enhanced stress inhibition (via the mPFC and ventral subiculum) as well as decreased stress excitation (central amygdala). Overall the data suggest that drugs targeting the glucocorticoid receptor may ameliorate stress dysfunction associated with depressive illness.


Subject(s)
Depression/drug therapy , Hypothalamo-Hypophyseal System/drug effects , Mifepristone/therapeutic use , Pituitary-Adrenal System/drug effects , Receptors, Glucocorticoid/antagonists & inhibitors , Stress, Psychological/drug therapy , Adrenocorticotropic Hormone/blood , Amygdala/drug effects , Animals , Corticosterone/blood , Hippocampus/drug effects , Hypothalamus/drug effects , Limbic System/drug effects , Male , Prefrontal Cortex/drug effects , Proto-Oncogene Proteins c-fos/analysis , Rats , Swimming/physiology , Swimming/psychology
SELECTION OF CITATIONS
SEARCH DETAIL