Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Adv Exp Med Biol ; 1071: 137-142, 2018.
Article in English | MEDLINE | ID: mdl-30357744

ABSTRACT

The carotid bodies (CB) respond to changes in blood gases with neurotransmitter release, thereby increasing carotid sinus nerve firing frequency and ultimately correcting the pattern of breathing. It has previously been demonstrated that acute application of the adipokine leptin augments the hypoxic sensory response of the intact in-vitro CB (Pye RL, Roy A, Wilson RJ, Wyatt CN. FASEB J 30(1 Supplement):983.1, 2016) and isolated CB type I cell (Pye RL, Dunn EJ, Ricker EM, Jurcsisn JG, Barr BL, Wyatt CN. Arterial chemoreceptors in physiology and pathophysiology. Advances in experimental medicine and biology. Springer, Cham, 2015). This study's aim was to examine, in-vivo, if elevated leptin modulated CB function and breathing.Rats were fed high fat or control chow for 16-weeks. High fat fed (HFF) animals gained significantly more weight compared to control fed (CF) animals and had significantly higher serum leptin levels compared to CF. Utilizing whole-body plethysmography, HFF animals demonstrated significantly depressed breathing compared to CF at rest and during hypoxia. However, amplitudes in the change in breathing from rest to hypoxia were not significantly different between groups. CB type I cells were isolated and intracellular calcium levels recorded. Averaged and peak cellular hypoxic responses were not significantly different.Despite a small but significant rise in leptin, differences in breathing caused by high fat feeding are unlikely caused by an effect of leptin on CB type I cells. However, the possibility remains that leptin may have in-vivo postsynaptic effects on the carotid sinus nerve; this remains to be investigated.


Subject(s)
Carotid Body/physiopathology , Chemoreceptor Cells/cytology , Diet, High-Fat , Hypoxia/physiopathology , Respiration , Animals , Blood Gas Analysis , Rats
2.
Nat Commun ; 9(1): 4030, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279412

ABSTRACT

Asthma accounts for 380,000 deaths a year. Carotid body denervation has been shown to have a profound effect on airway hyper-responsiveness in animal models but a mechanistic explanation is lacking. Here we demonstrate, using a rat model of asthma (OVA-sensitized), that carotid body activation during airborne allergic provocation is caused by systemic release of lysophosphatidic acid (LPA). Carotid body activation by LPA involves TRPV1 and LPA-specific receptors, and induces parasympathetic (vagal) activity. We demonstrate that this activation is sufficient to cause acute bronchoconstriction. Moreover, we show that prophylactic administration of TRPV1 (AMG9810) and LPA (BrP-LPA) receptor antagonists prevents bradykinin-induced asthmatic bronchoconstriction and, if administered following allergen exposure, reduces the associated respiratory distress. Our discovery provides mechanistic insight into the critical roles of carotid body LPA receptors in allergen-induced respiratory distress and suggests alternate treatment options for asthma.


Subject(s)
Acrylamides/therapeutic use , Asthma/prevention & control , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Carotid Body/metabolism , Lysophospholipids/therapeutic use , Receptors, Lysophosphatidic Acid/metabolism , TRPV Cation Channels/metabolism , Acrylamides/pharmacology , Animals , Asthma/etiology , Asthma/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Disease Models, Animal , Drug Evaluation, Preclinical , Lysophospholipids/pharmacology , Male , Rats, Inbred BN , Rats, Sprague-Dawley , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , TRPV Cation Channels/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL