Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Neuro Endocrinol Lett ; 43(5): 247-256, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36584401

ABSTRACT

OBJECTIVE: The etiology of type 1 diabetes mellitus (DM1) is not fully understood. Some studies indicate an excess or deficiency of certain trace elements may affect glucose and insulin metabolism. This study aimed to assess the concentrations of trace elements in children with newly diagnosed DM1. The study group comprised 35 children aged 3-17 years (mean, 8.83±3.55 years). Serum concentrations of selenium, zinc, copper, and arsenic were determined at the time of diagnosis, after ~2 weeks (during insulin treatment), and after 6 months. No trace element deficiency was observed. Selenium levels were increased at all time points (77.61±14.03 µg/l; 70.42±11.04 µg/l; 75.79±12.89 µg/l). Arsenic levels were increased at the time of discharge (0.30±0.24 µg/l) and upon 6 months control visit (0.67±1.98 µg/l) for DM1. Copper levels were elevated at the time of diagnosis (1333±244 µg/l). No significant differences were observed in zinc concentrations between study and control group or between time points. Trace elements in the environment, especially selenium, may increase the incidence of DM1, although further research is required to confirm this association.


Subject(s)
Arsenic , Diabetes Mellitus, Type 1 , Insulins , Selenium , Trace Elements , Child , Humans , Copper , Diabetes Mellitus, Type 1/diagnosis , Zinc
2.
Clin Endocrinol (Oxf) ; 71(3): 358-62, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19021632

ABSTRACT

OBJECTIVE: Mutations in the ABCC8 gene encoding the SUR1 subunits of the beta-cell K-ATP channel cause neonatal diabetes (ND) mellitus. We aimed to determine the contribution of ABCC8 gene to ND in Poland, to describe the clinical phenotype associated with its mutations and to examine potential modifying factors. PATIENTS: The Nationwide Registry of ND in Poland includes patients diagnosed before 6 months of age. In total 16 Kir6.2 negative patients with ND, 14 permanent and 2 relapsed transient, were examined. MEASUREMENTS: ABCC8 gene mutations were detected by direct sequencing. Mutation carriers' characteristics included clinical data and biochemical parameters. In addition, we performed the hyperinsulinaemic euglycaemic clamp and tested for islet-specific antibodies in diabetic subjects. RESULTS: We identified two probands with permanent ND (one heterozygous F132V mutation carrier and one compound heterozygote with N23H and R826W mutations) and two others with relapsed transient ND (heterozygotes for R826W and V86A substitutions, respectively). One subject, a heterozygous relative with the R826W mutation, had adult onset diabetes. There were striking differences in the clinical picture of the mutation carriers as the carrier of two mutations, N23H and R826W, was controlled on diet alone with HbA(1c) of 7.3%, whereas the F132V mutation carrier was on 0.66 IU/kg/day of insulin with HbA(1c) of 11.7%. The C-peptide level varied from 0.1 ng/ml (F132V) to 0.75 ng/ml (V86A). We also observed a variable insulin resistance, from moderate (M = 5.5 and 5.6 mg/kg/min, respectively, in the two R826W mutation carriers) to severe (M = 2.6 mg/kg/min in the F132V mutation carrier). We were able to transfer two patients off insulin to sulphonylurea (SU) and to reduce insulin dose in one other patient. Interestingly, there was no response to SU in the most insulin resistant F132V mutation carrier despite high dose of glibenclamide. All examined auto-antibodies were present in one of the subjects, the V86A mutation carrier, although this did not seem to influence the clinical picture, as we were able to transfer this girl off insulin. CONCLUSION: Mutations in SUR1 are the cause of about 15% of Kir6.2 negative permanent ND in Poland. The clinical phenotype of SUR1 diabetic mutation carriers is heterogeneous and it appears to be modified by variable sensitivity to insulin.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Diabetes Mellitus/genetics , Mutation , Potassium Channels, Inwardly Rectifying/genetics , Receptors, Drug/genetics , Adolescent , Child , Female , Humans , Infant , Male , Pedigree , Phenotype , Poland , Sulfonylurea Receptors
SELECTION OF CITATIONS
SEARCH DETAIL