Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Phytochem Anal ; 35(3): 530-539, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009261

ABSTRACT

INTRODUCTION: Prunellae Spica (PS), derived from the dried fruit spikes of Prunella vulgaris L., is a traditional Chinese medicinal herb. Our previous studies found that PVE30, a water-extracting ethanol-precipitating "glycoprotein" macromolecule of PS, was a potential anti-herpes simplex virus (HSV) candidate. However, due to the complex structure and diverse bioactivity of the "glycoprotein", ensuring its quality consistency across different batches of PVE30 becomes particularly challenging. This poses a significant hurdle for new drug development based on PVE30. OBJECTIVE: Our study aimed to integrate multi-index determination coupled with hierarchical cluster analysis (HCA) to holistically profile the quality consistency of "glycoprotein" in PVE30. METHODS: High-performance gel permeation chromatography with refractive index detector (HPGPC-RID) was used to characterise the molecular weight (Mw) distribution, HPLC-PDA was used to quantitatively analyse the composed monosaccharides and amino acids, and UV-VIS was used to quantify the contents of polysaccharides and proteins. Qualitative and quantitative consistency was analysed for each single index in 16 batches of PVE30, and a 16 × 38 data matrix, coupled with HCA, was used to evaluate the holistic quality consistency of PVE30. RESULTS: The newly developed and validated methods were exclusive, linear, precise, accurate, and stable enough to quantify multi-indexes in PVE30. Single-index analysis revealed that 16 batches of PVE30 were qualitatively consistent in Mw distribution, polysaccharides and proteins, and the composition of composed monosaccharides and amino acids but quantitatively inconsistent in the relative contents of some "glycoprotein" macromolecules, as well as the composed monosaccharides/amino acids. HCA showed that the holistic quality of PVE30 was inconsistent, the inconsistency was uncorrelated with the regions where PS was commercially collected, and the contents of 17 amino acids and 2 monosaccharides contributed most to the holistic quality inconsistency. CONCLUSION: Multi-index determination coupled with HCA was successful in evaluating the quality consistency of PVE30, and the significant difference in quantitative indices was not caused by the origin of PS. The cultivating basis should be confirmed for PVE30-based new drug development.


Subject(s)
Drugs, Chinese Herbal , Simplexvirus , Amino Acids , Cluster Analysis , Polysaccharides , Monosaccharides , Chromatography, High Pressure Liquid/methods
2.
Chin Med ; 18(1): 90, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37507786

ABSTRACT

BACKGROUND: Ventricular remodeling is the adaptive process in which the heart undergoes changes due to stress, leading to heart failure (HF). The progressive decline in cardiac function is considered to contribute to intestinal barrier impairment. LuQi Formula (LQF) is a traditional Chinese medicine preparation widely used in the treatment of ventricular remodeling and HF. However, the role of LQF in the impairment of intestinal barrier function induced by ventricular remodeling remains unclear. MATERIALS AND METHODS: Ventricular remodeling was induced in rats by permanently ligating the left anterior descending branch coronary artery, and cardiac function indexes were assessed using echocardiography. Heart and colon tissue morphology were observed by hematoxylin-eosin, Masson's trichrome and Alcian Blue Periodic acid Schiff staining. Myocardial cell apoptosis was detected using TUNEL and immunohistochemistry. Circulatory levels of brain natriuretic peptide (BNP), intestinal permeability markers endotoxin, D-lactate and zonulin, as well as inflammatory cytokines tumor necrosis factor alpha and interleukin-1 beta were measured by Enzyme-linked immunosorbent assay. Expression levels of tight junction (TJ) proteins and hypoxia-inducible factor-1 alpha (HIF-1α) in colon tissue were detected by immunofluorescence, immunohistochemistry and western blotting. Cardiac function indexes and intestinal permeability markers of patients with HF were analyzed before and after 2-4 months of LQF treatment. RESULTS: LQF protected cardiac function and alleviated myocardial fibrosis and apoptosis in rats with ventricular remodeling. LQF protected the intestinal barrier integrity in ventricular remodeling rats, including maintaining colonic tissue morphology, preserving the number of goblet cells and normal expression of TJ proteins. Furthermore, LQF upregulated the expression of HIF-1α protein in colon tissue. Intervention with a HIF-1α inhibitor weakened the protective effect of LQF on intestinal barrier integrity. Moreover, a reduction of HIF-1α aggravated ventricular remodeling, which could be alleviated by LQF. Correspondingly, the circulating levels of intestinal permeability markers and BNP in HF patients were significantly decreased, and cardiac function markedly improved following LQF treatment. CONCLUSIONS: We demonstrated that LQF effectively protected cardiac function by preserving intestinal barrier integrity caused by ventricular remodeling, at least partially through upregulating HIF-1α expression.

3.
Chin Med ; 18(1): 61, 2023 May 28.
Article in English | MEDLINE | ID: mdl-37246229

ABSTRACT

BACKGROUND: Pancreatic cancer (PAC), a malignancy that is fatal and commonly diagnosed at a late stage. Despite considerable advancements in cancer treatment, the survival rate of PAC remains largely consistent for the past 60 years. The traditional Chinese medicine formula Pulsatilla Decoction (PD) has been clinically used to treat inflammatory diseases for millennia and recently as a supplementary anti-cancer treatment in China. However, the bioactive ingredients and mechanisms underlying its anti-cancer effect remains unclear. METHODS: The composition and quality control of PD were verified through analysis by high performance liquid chromatography. Cell viability was determined using Cell Counting Kit-8 assay. The cell cycle distribution was analyzed through PI staining and flow cytometry analysis, while apoptotic cells were measured by double staining with Annexin V-FITC and PI. We used immunoblotting to examine protein expressions. The in vivo effects of ß-peltatin and podophyllotoxin were evaluated on a subcutaneously-xenografted BxPC-3 cell nude mice model. RESULTS: The current study demonstrated that PD markedly inhibited PAC cell proliferation and triggered their apoptosis. Four herbal PD formula was then disassembled into 15 combinations of herbal ingredients and a cytotoxicity assay showed that the Pulsatillae chinensis exerted the predominant anti-PAC effect. Further investigation indicated that ß-peltatin was potently cytotoxic with IC50 of ~ 2 nM. ß-peltatin initially arrested PAC cells at G2/M phase, followed by apoptosis induction. Animal study confirmed that ß-peltatin significantly suppressed the growth of subcutaneously-implanted BxPC-3 cell xenografts. Importantly, compared to podophyllotoxin that is the parental isomer of ß-peltatin but clinically obsoleted due to its severe toxicity, ß-peltatin exhibited stronger anti-PAC effect and lower toxicity in mice. CONCLUSIONS: Our results demonstrate that Pulsatillae chinensis and particularly its bioactive ingredient ß-peltatin suppress PAC by triggering cell cycle arrest at G2/M phase and apoptosis.

4.
J Ginseng Res ; 47(2): 183-192, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36926608

ABSTRACT

Viral infections are known as one of the major factors causing death. Ginseng is a medicinal plant that demonstrated a wide range of antiviral potential, and saponins are the major bioactive ingredients in the genus Panax with vast therapeutic potential. Studies focusing on the antiviral activity of the genus Panax plant-derived agents (extracts and saponins) and their mechanisms were identified and summarized, including contributions mainly from January 2016 until January 2022. P. ginseng, P. notoginseng, and P. quinquefolius were included in the review as valuable medicinal herbs against infections with 14 types of viruses. Reports from 9 extracts and 12 bioactive saponins were included, with 6 types of protopanaxadiol (PPD) ginsenosides and 6 types of protopanaxatriol (PPT) ginsenosides. The mechanisms mainly involved the inhibition of viral attachment and replication, the modulation of immune response by regulating signaling pathways, including the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway, phosphoinositide-dependent kinase-1 (PDK1)/ protein kinase B (Akt) signaling pathway, c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. This review includes detailed information about the mentioned antiviral effects of the genus Panax extracts and saponins in vitro and in vivo, and in human clinical trials, which provides a scientific basis for ginseng as an adjunctive therapeutic drug or nutraceutical.

5.
Biomed Pharmacother ; 158: 114139, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36580724

ABSTRACT

BACKGROUND: Although autophagy is a recognized contributor to the pathogenesis of human diseases, chloroquine and hydroxychloroquine are the only two FDA-approved autophagy inhibitors to date. Emerging evidence has revealed the potential therapeutic benefits of various extracts and active compounds isolated from ginseng, especially ginsenosides and their derivatives, by mediating autophagy. Mechanistically, active components from ginseng mediate key regulators in the multistep processes of autophagy, namely, initiation, autophagosome biogenesis and cargo degradation. AIM OF REVIEW: To date, a review that systematically described the relationship between ginseng and autophagy is still lacking. Breakthroughs in finding the key players in ginseng-autophagy regulation will be a promising research area, and will provide positive insights into the development of new drugs based on ginseng and autophagy. KEY SCIENTIFIC CONCEPTS OF REVIEW: Here, we comprehensively summarized the critical roles of ginseng-regulated autophagy in treating diseases, including cancers, neurological disorders, cardiovascular diseases, inflammation, and neurotoxicity. The dual effects of the autophagy response in certain diseases are worthy of note; thus, we highlight the complex impacts of both ginseng-induced and ginseng-inhibited autophagy. Moreover, autophagy and apoptosis are controlled by multiple common upstream signals, cross-regulate each other and affect certain diseases, especially cancers. Therefore, this review also discusses the cross-signal transduction pathways underlying the molecular mechanisms and interaction between ginseng-regulated autophagy and apoptosis.


Subject(s)
Cardiovascular Diseases , Ginsenosides , Panax , Humans , Autophagy , Cardiovascular Diseases/drug therapy , Signal Transduction , Ginsenosides/pharmacology , Ginsenosides/therapeutic use
6.
Front Microbiol ; 13: 1025605, 2022.
Article in English | MEDLINE | ID: mdl-36299732

ABSTRACT

Herpes simplex virus (HSV), an alphaherpesvirus, is highly prevalent in the human population and is known to cause oral and genital herpes and various complications. Represented by acyclovir (ACV), nucleoside analogs have been the main clinical treatment against HSV infection thus far. However, due to prolonged and excessive use, HSV has developed ACV-resistant strains. Therefore, effective treatment against ACV-resistant HSV strains is urgently needed. In this review, we summarized the plant extracts and natural compounds that inhibited ACV-resistant HSV infection and their mechanism of action.

7.
Front Pharmacol ; 13: 842203, 2022.
Article in English | MEDLINE | ID: mdl-35185591

ABSTRACT

Gastrointestinal cancers refer to a group of deadly malignancies of the gastrointestinal tract and organs of the digestive system. Over the past decades, considerable amounts of medicinal plants have exhibited potent anticancer effects on different types of gastrointestinal cancers. OMICS, systems biology approaches covering genomics, transcriptomics, proteomics and metabolomics, are broadly applied to comprehensively reflect the molecular profiles in mechanistic studies of medicinal plants. Single- and multi-OMICS approaches facilitate the unravelling of signalling interaction networks and key molecular targets of medicinal plants with anti-gastrointestinal cancer potential. Hence, this review summarizes the applications of various OMICS and advanced bioinformatics approaches in examining therapeutic targets, signalling pathways, and the tumour microenvironment in response to anticancer medicinal plants. Advances and prospects in this field are also discussed.

8.
Molecules ; 26(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065886

ABSTRACT

Nujiangexanthone A (NJXA), a bioactive component isolated from the leaves of Garcinia nujiangensis, has been reported to exhibit anti-inflammatory, antioxidant, and antitumor effects. Our previous work has shown that NJXA induced G0/1 arrest and apoptosis, thus suppressing cervical cancer cell growth. The present study provides new evidence that NJXA can induce cell death in HeLa cells by promoting mitophagy. We first identified that NJXA triggered GFP-LC3 and YFP-Parkin puncta accumulation, which are biomarkers of mitophagy. Moreover, NJXA degraded the mitochondrial membrane proteins Tom20 and Tim23 and mitochondrial fusion proteins MFN1 and MFN2, downregulated Parkin, and stabilized PINK1. Additionally, we revealed that NJXA induced lysosome degradation and colocalization of mitochondria and autophagosomes, which was attenuated by knocking down ATG7, the key regulator of mitophagy. Furthermore, since mitophagy is induced under starvation conditions, we detected the cytotoxic effect of NJXA in nutrient-deprived HeLa cells and observed better cytotoxicity. Taken together, our work contributes to the further clarification of the mechanism by which NJXA inhibits cervical cancer cell proliferation and provides evidence that NJXA has the potential to develop anticancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Garcinia/chemistry , Mitophagy/drug effects , Plant Extracts/pharmacology , Uterine Cervical Neoplasms/metabolism , Xanthones/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Autophagosomes/metabolism , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Cell Proliferation/genetics , Female , Gene Knockout Techniques , HeLa Cells , Humans , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitophagy/genetics , Nutrients/deficiency , Plant Leaves/chemistry , Signal Transduction/drug effects , Signal Transduction/genetics , Transfection , Ubiquitin-Protein Ligases/metabolism , Uterine Cervical Neoplasms/pathology
9.
Molecules ; 26(4)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669877

ABSTRACT

Mycomedicine is a unique class of natural medicine that has been widely used in Asian countries for thousands of years. Modern mycomedicine consists of fruiting bodies, spores, or other tissues of medicinal fungi, as well as bioactive components extracted from them, including polysaccharides and, triterpenoids, etc. Since the discovery of the famous fungal extract, penicillin, by Alexander Fleming in the late 19th century, researchers have realised the significant antibiotic and other medicinal values of fungal extracts. As medicinal fungi and fungal metabolites can induce apoptosis or autophagy, enhance the immune response, and reduce metastatic potential, several types of mushrooms, such as Ganoderma lucidum and Grifola frondosa, have been extensively investigated, and anti-cancer drugs have been developed from their extracts. Although some studies have highlighted the anti-cancer properties of a single, specific mushroom, only limited reviews have summarised diverse medicinal fungi as mycomedicine. In this review, we not only list the structures and functions of pharmaceutically active components isolated from mycomedicine, but also summarise the mechanisms underlying the potent bioactivities of several representative mushrooms in the Kingdom Fungi against various types of tumour.


Subject(s)
Antineoplastic Agents/therapeutic use , Biological Products/therapeutic use , Fungi/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Biological Products/chemistry , Biological Products/pharmacology , Clinical Trials as Topic , Humans , Neoplasms/immunology
10.
Oncotarget ; 7(35): 56650-56663, 2016 Aug 30.
Article in English | MEDLINE | ID: mdl-27494863

ABSTRACT

Hepatocellular carcinoma (HCC) is an aggressive malignancy and the 5-year survival rate of advanced HCC is < 10%. Guttiferone K (GUTK) isolated from the Garcinia genus inhibited HCC cells migration and invasion in vitro and metastasis in vivo without apparent toxicity. Proteomic analysis revealed that actin-binding protein profilin 1 (PFN1) was markedly increased in the presence of GUTK. Over-expression of PFN1 mimicked the effect of GUTK on HCC cell motility and metastasis. The effect of GUTK on cell motility was diminished when PFN1 was over-expressed or silenced. Over-expression of PFN1 or incubation with GUTK decreased F-actin levels and the expression of proteins involved in actin nucleation, branching and polymerization. Moreover, a reduction of PFN1 protein levels was common in advanced human HCC and associated with poor survival rate. In conclusion, GUTK effectively suppresses the motility and metastasis of HCC cells mainly by restoration of aberrantly reduced PFN1 protein expression.


Subject(s)
Benzophenones/pharmacology , Carcinoma, Hepatocellular/metabolism , Garcinia/chemistry , Liver Neoplasms/metabolism , Plant Extracts/chemistry , Profilins/metabolism , Actins/chemistry , Adult , Aged , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Drug Screening Assays, Antitumor , Female , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Neoplasm Invasiveness , Neoplasm Metastasis/drug therapy , Proteomics , Treatment Outcome
11.
Cancer Lett ; 380(2): 447-456, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27424288

ABSTRACT

Cervical cancer is among the most frequently diagnosed cancers in females worldwide. Nujiangexathone A (NJXA), a novel compound from Garcinia nujiangensis, has been shown to have anti-cancer potential. In this study, the anti-tumor effects and the underlying mechanisms of NJXA action were investigated. Our results suggested that NJXA induced G0/G1 cell cycle arrest in HeLa and SiHa cells by down-regulating cyclins B1, E1, and A and cyclin-dependent kinases 2, 4 and 6, while selectively restoring p27. Using two-dimensional gel electrophoresis, we showed that NJXA reduced the expression of heterogeneous nuclear ribonucleoprotein K (hnRNPK) by accelerating ubiquitin-proteasome-dependent hnRNPK degradation, which then induced cell cycle arrest through the c-Myc-cyclin/Cdk-Rb-E2F1 pathway. The loss-of-function study showed NJXA induced cell cycle arrest was mediated by down regulation of hnRNPK protein. In vivo results further confirmed the tumor inhibitory effect of NJXA via the down-regulation of hnRNPK, and NJXA induced no apparent toxicity. Our study suggests that NJXA may be a novel anti-cancer drug candidate, especially for treating cancers with abnormally high hnRNPK expression.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Garcinia/chemistry , Plant Extracts/pharmacology , Ribonucleoproteins/metabolism , Uterine Cervical Neoplasms/drug therapy , Xanthones/pharmacology , Animals , Cell Cycle Proteins/metabolism , Cell Survival/drug effects , Dose-Response Relationship, Drug , Down-Regulation , Female , HeLa Cells , Heterogeneous-Nuclear Ribonucleoprotein K , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Phytotherapy , Plant Extracts/isolation & purification , Plants, Medicinal , Proteasome Endopeptidase Complex/metabolism , Proteolysis , RNA Interference , Ribonucleoproteins/genetics , Signal Transduction/drug effects , Time Factors , Transfection , Tumor Burden/drug effects , Ubiquitination , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Xenograft Model Antitumor Assays
12.
Sci Rep ; 5: 10293, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25973684

ABSTRACT

Tumor metastasis is the main cause of cancer-related patient death. In this study, we performed a wound healing migration screen to search for a metastatic inhibitor within our library of natural compounds. We found that oblongifolin C (OC), a natural compound extracted from Garcinia yunnanensis Hu, is an effective inhibitor of metastasis in human esophageal squamous carcinoma Eca109 cells. The transwell migration and matrigel invasion assay results also showed that OC inhibits the migration of Eca109 cells and HepG2 cells. OC can increase the expression of tubulin, indicating that OC inhibits metastasis via tubulin aggregation. In addition, the Western blotting, real-time PCR, and immunostaining results indicated that OC increases the expression of keratin18. Furthermore, the knockdown of keratin 18 by small interfering RNAs inhibited the expression of tubulin and increased the metastasis of cancer cells, suggesting that keratin 18 is the upstream signal of tubulin and plays a vital role in metastasis. A subsequent study in a tail vein injection metastasis model showed that OC can significantly inhibit pulmonary metastasis, as revealed by immunohistochemistry staining. Taken together, our results suggest that OC inhibits metastasis through the induction of the expression of keratin 18 and may be useful in cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Keratin-18/biosynthesis , Neoplasm Metastasis/drug therapy , Terpenes/pharmacology , Tubulin/biosynthesis , Animals , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Garcinia/metabolism , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Keratin-18/genetics , Mice , Mice, Nude , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/pathology , Plant Extracts/pharmacology , RNA Interference , RNA, Small Interfering , Wound Healing/drug effects
13.
J Proteomics ; 75(15): 4833-43, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22677112

ABSTRACT

Hepatocellular carcinoma (HCC) is a global public health problem which causes approximately 500,000 deaths annually. Considering that the limited therapeutic options for HCC, novel therapeutic targets and drugs are urgently needed. In this study, we discovered that 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone (TDP), isolated from the traditional Chinese medicinal herb, Garcinia oblongifolia, effectively inhibited cell growth and induced the caspase-dependent mitochondrial apoptosis in HCC. A two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were performed to find the molecular targets of TDP in HCC cells. Eighteen proteins were identified as differently expressed, with Hsp27 protein being one of the most significantly down-regulated proteins induced by TDP. In addition, the following gain- and loss-of-function studies indicated that Hsp27 mediates mitochondrial apoptosis induced by TDP. Furthermore, a nude mice model also demonstrated the suppressive effect of TDP on HCC. Our study suggests that TDP plays apoptosis-inducing roles by strongly suppressing the Hsp27 expression that is specifically associated with the mitochondrial death of the caspase-dependent pathway. In conclusion, TDP may be a potential anti-cancer drug candidate, especially to cancers with an abnormally high expression of Hsp27.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , HSP27 Heat-Shock Proteins/biosynthesis , Liver Neoplasms/metabolism , Mitochondria, Liver/metabolism , Neoplasm Proteins/biosynthesis , Xanthones/pharmacology , Animals , Antineoplastic Agents/chemistry , Caspases/metabolism , Female , Garcinia/chemistry , Heat-Shock Proteins , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Male , Mice , Mice, Nude , Mitochondria, Liver/pathology , Molecular Chaperones , Neoplasm Transplantation , Proteomics/methods , Transplantation, Heterologous , Xanthones/chemistry , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL