Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Heliyon ; 10(7): e29169, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38633631

ABSTRACT

Gastric cancer (GC) is one of the most prominent malignancies that originate in the epithelial cells of the gastric mucosa and is one of the main causes of cancer-related mortality worldwide. New circulating biomarkers of exosomal RNA might have great potential for non-invasive early prognosis of GC. Sijunzi Decoction (SJZD) is a typical representative formula of the method of benefiting Qi and strengthening the spleen in Traditional Chinese Medicine (TCM). However, the effects and mechanism of SJZD in treating GC remain unclear. This study looked for biomarkers of exosomal RNA for early prognosis of GC, and explored the mechanism of SJZD in treating GC. A gastric cancer model with spleen deficiency syndrome was established in nude mice, and the curative effects of SJZD were investigated. Differentially expressed miRNAs in plasma and saliva exosomes were sequenced and analyzed. Potential target genes of these miRNAs were predicted and applied for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment annotation. Overlapping miRNAs in saliva and plasma samples were analyzed, and qRT-PCR was performed for verification. miR-151a-3p was selected, and qRT-PCR further determined that miR-151a-3p was downregulated in saliva and plasma exosomes from the SJZD group. The intersected miR-151a-3p target genes were predicted and enriched in the extrinsic apoptotic signaling pathways. SJZD significantly ameliorates gastric cancer with spleen deficiency syndrome in mouse models, and exosomal miRNAs, particularly miR-151-3p, might be modulated by SJZD in plasma and saliva. The exosomal miR-151-3p in saliva may serve as a non-invasive potential marker for gastric cancer diagnosis and prognosis.

2.
J Ethnopharmacol ; 275: 114098, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33831468

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: With the spread of Coronavirus Disease (2019) (COVID-19), combination with traditional Chinese medicine (TCM) has been widely used as a prevention and therapy strategy in China. Xin guan No.1 (XG-1) prescription is a preventive formula recommended by the Hunan Provincial Administration of TCM to prevent the pandemic of COVID-19. AIM OF THE STUDY: To explore the potential preventive mechanisms of XG-1 against COVID-19 in the combination of network pharmacology approach, single-cell RNA expression profiling analysis, molecular docking and retrospective study. MATERIALS AND METHODS: Encyclopedia of Traditional Chinese Medicine (ETCM) database was used to determine the meridian tropism, active components and target genes of XG-1. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis were conducted by R Cluster Profiler package (3.14.3). Single cell RNA sequencing (scRNA-seq) data of human lung (GSE122960) was downloaded from Gene Expression Omnibus (GEO) database and analyzed by R Seurat package (3.1.2). Cytoscape (3.7.2) was used to construct the interaction network. The main ingredients in XG-1 were identified by HPLC- Q-TOF- MS and used for molecular docking with COVID-19 3CL hydrolytic enzyme and angiotensin converting enzyme II (ACE2). A retrospective study of 47 close contact participants from Dongtang Community of Hunan Province was conducted to evaluated the preventive effect of XG-1. RESULTS: According to the network pharmacology analysis, XG-1 formula was closely related to lung-, spleen- and stomach-meridians and include a total of 206 active components and 853 target genes. GO and KEGG pathway enrichment revealed that XG-1 mainly regulated cellular amino acid metabolism process and neuroactive ligand-receptors interaction. The scRNA-seq profiling showed that angiotensin converting enzyme 2 (ACE2) was principally expressed in alveolar type 2 epithelial cells (AT2). 153 genes were up-regulated in AT2 cells expressing ACE2 and 12 genes were obtained by intersecting with XG-1 target genes, of which 3 were related to immunity. Five main chemical ingredients were detected in XG-1 sample by HPLC-Q-TOF-MS. The molecular docking showed that Rutin, Liquiritin and Astragaloside Ⅳ had a good affinity with COVID-19 3CL hydrolytic enzyme and ACE2. Compared with participants who didn't take XG-1, preventive treatment with XG-1gradules resulted in a significant lower rate of testing positive for SARS-CoV-2 nucleic acid (P < 0.0001). CONCLUSION: The present study showed that XG-1 exerts a preventive effect in close contacts against COVID-19. The underlying mechanism may be related to modulate immunity response through multiple components, pathways, and several target genes co-expressed with ACE2. These findings provide preliminary evidences and methodological reference for the potential preventive mechanism of XG-1 against COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/prevention & control , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , SARS-CoV-2/drug effects , Adult , Animals , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Databases, Genetic , Female , Gene Expression Profiling , Gene Regulatory Networks , Host-Pathogen Interactions , Humans , Male , Middle Aged , Molecular Docking Simulation , Protein Interaction Maps , RNA-Seq , Retrospective Studies , SARS-CoV-2/pathogenicity , Signal Transduction , Transcriptome , Young Adult
3.
J Ethnopharmacol ; 270: 113794, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33422654

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chaihu-Longgu-Muli Decoction (CLMD) is a classic prescription created by Zhong-jing Zhang, a famous ancient Chinese medical scientist, to harmonize uncontrollable body activities and calm the minds. Now Traditional Chinese Medicine (TCM) physicians often apply it to treat psychiatric diseases such as epilepsy. AIM OF THE STUDY: This study investigated the mechanism of the effect of Chaihu-Longgu-Muli Decoction (CLMD) on hippocampal neurons pyroptosis in rats with Temporal Lobe Epilepsy (TLE). MATERIALS AND METHODS: The lithium chloride-pilocarpine-induced TLE rat model was established. The behavioral testing was performed and, the expression of IL-1ß and TNF-α in serum was detected by ELISA, qRT-PCR was used to detect the mRNA expression of NLRP3, Caspase-1, IL-1ß and TNF-α in hippocampus. The expression of NLRP3 and Caspase-1 in hippocampal dentate gyrus was detected by immunofluorescence assay. RESULTS: CLMD could significantly suppress the frequency and duration time of epileptic seizures, reduce the expression of NLRP3, Caspase-1 TNF-α and IL-1ß. CONCLUSIONS: CLMD exerted an obvious antiepileptic effect by improving pyroptosis in hippocampal neurons of TLE rats.


Subject(s)
Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Drugs, Chinese Herbal/pharmacology , Epilepsy, Temporal Lobe/drug therapy , Hippocampus/drug effects , Neurons/drug effects , Pyroptosis/drug effects , Animals , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/metabolism , Hippocampus/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lithium Chloride/toxicity , Male , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neurons/metabolism , Pilocarpine/toxicity , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
4.
J Ethnopharmacol ; 259: 112990, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32442588

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chaihu-Longgu-Muli decoction (CLMD) is a well-known ancient formula in traditional Chinese medicine (TCM) to relieve disorder, clear away heat, tranquilize the mind and allay excitement. It has been used for the therapy of neuropsychiatric disorders such as epilepsy, dementia, insomnia, anxiety, and depression for several centuries in China. AIM OF THE STUDY: This paper is based on the assumption that the mechanism by which CLMD relieves epileptic symptoms in rats is associated with improving autophagy. Several experimental methods are designed to testify the hypothesis. MATERIALS AND METHODS: The lithium-pilocarpine-induced epilepsy model was established in rats. The seizure frequency was recorded. Morphology and number of autophagosomes in hippocampal dentate gyrus was detected with a transmission electron microscope (TEM). Expression of Beclin-1, microtubule-associated proteins 1A/1B light chain 3 (LC3), and mammalian target of rapamycin (mTOR) in dentate gyrus was measured by immunofluorescence assay, quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western-blotting. RESULTS: CLMD could significantly relieve the seizure frequency and improve autophagy in hippocampal dentate gyrus. Meanwhile, the level of Beclin-1 and LC3B decreased significantly, while mTOR increased remarkably after medical intervention. CONCLUSIONS: CLMD could improve autophagy in hippocampal dentate gyrus due to epilepsy, especially at high dose. The mechanism may be related to upregulated expression of mTOR and downregulated expression of Beclin-1 and LC3B.


Subject(s)
Anticonvulsants/pharmacology , Autophagy/drug effects , Drugs, Chinese Herbal/pharmacology , Epilepsy/drug therapy , Hippocampus/drug effects , Neurons/drug effects , Animals , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Behavior, Animal/drug effects , Disease Models, Animal , Epilepsy/chemically induced , Epilepsy/metabolism , Epilepsy/pathology , Hippocampus/metabolism , Hippocampus/physiopathology , Hippocampus/ultrastructure , Lithium Chloride , Male , Neurons/metabolism , Neurons/pathology , Pilocarpine , Rats, Sprague-Dawley , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL