Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 331
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Neurochem Int ; 176: 105725, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561151

ABSTRACT

Epilepsy constitutes a global health concern, affecting millions of individuals and approximately one-third of patients exhibit drug resistance. Recent investigations have revealed alterations in cerebral iron content in both epilepsy patients and animal models. However, the extant literature lacks a comprehensive exploration into the ramifications of modulating iron homeostasis as an intervention in epilepsy. This study investigated the impact of deferasirox, a iron ion chelator, on epilepsy. This study unequivocally substantiated the antiepileptic efficacy of deferasirox in a kainic acid-induced epilepsy model. Furthermore, deferasirox administration mitigated seizure susceptibility in a pentylenetetrazol-induced kindling model. Conversely, the augmentation of iron levels through supplementation has emerged as a potential exacerbating factor in the precipitating onset of epilepsy. Intriguingly, our investigation revealed a hitherto unreported discovery: ITPRIP was identified as a pivotal modulator of excitatory synaptic transmission, regulating seizures in response to deferasirox treatment. In summary, our findings indicate that deferasirox exerts its antiepileptic effects through the precise targeting of ITPRIP and amelioration of cerebral iron homeostasis, suggesting that deferasirox is a promising and novel therapeutic avenue for interventions in epilepsy.


Subject(s)
Anticonvulsants , Brain , Deferasirox , Epilepsy , Iron Chelating Agents , Iron , Membrane Proteins , Animals , Male , Mice , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Brain/drug effects , Brain/metabolism , Deferasirox/pharmacology , Epilepsy/drug therapy , Epilepsy/metabolism , Homeostasis/drug effects , Homeostasis/physiology , Iron/metabolism , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Kindling, Neurologic/drug effects , Pentylenetetrazole/toxicity , Rats, Sprague-Dawley , Membrane Proteins/drug effects , Membrane Proteins/metabolism
2.
Mol Nutr Food Res ; 68(7): e2300616, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430210

ABSTRACT

SCOPE: Endocannabinoid signaling regulates energy homeostasis, and is tightly associated with nonalcoholic fatty liver disease (NAFLD). The study previously finds that supplementation of docosahexaenoic acid (DHA) has superior function to ameliorate NAFLD compared with eicosapentaenoic acid (EPA), however, the underlying mechanism remains elusive. The present study aims to investigate whether DHA intervention alleviates NAFLD via endocannabinoid system. METHODS AND RESULTS: In a case-control study, the serum endocannabinoid ligands in 60 NAFLD and 60 healthy subjects are measured. Meanwhile, NAFLD model is established in mice fed a high-fat and -cholesterol diet (HFD) for 9 weeks. DHA or EPA is administrated for additional 9 weeks. Serum primary endocannabinoid ligands, namely anandamide (AEA) and 2-arachidoniylglycerol (2-AG), are significantly higher in individuals with NAFLD compared with healthy controls. NAFLD model shows that serum 2-AG concentrations and adipocyte cannabinoid receptor 1 expression levels are significantly lower in DHA group compared with HFD group. Lipidomic and targeted ceramide analyses further confirm that endocannabinoid signaling inhibition has exerted deletion of hepatic C16:0-ceramide contents, resulting in down-regulation of de novo fatty acid synthesis and up-regulation of fatty acid ß-oxidation related protein expression levels. CONCLUSIONS: This work elucidates that DHA has improved NAFLD by suppressing endocannabinoid system.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/metabolism , Endocannabinoids/metabolism , Case-Control Studies , Liver/metabolism , Eicosapentaenoic Acid/pharmacology , Ceramides/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL
3.
J Ethnopharmacol ; 328: 118075, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38513779

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tanacetum parthenium (L.) Schultz-Bip, commonly known as feverfew, has been traditionally used to treat fever, migraines, rheumatoid arthritis, and cancer. Parthenolide (PTL), the main bioactive ingredient isolated from the shoots of feverfew, is a sesquiterpene lactone with anti-inflammatory and antitumor properties. Previous studies showed that PTL exerts anticancer activity in various cancers, including hepatoma, cholangiocarcinoma, acute myeloid leukemia, breast, prostate, and colorectal cancer. However, the metabolic mechanism underlying the anticancer effect of PTL remains poorly understood. AIM OF THE STUDY: To explore the anticancer activity and underlying mechanism of PTL in human cholangiocarcinoma cells. MATERIAL AND METHODS: In this investigation, the effects and mechanisms of PTL on human cholangiocarcinoma cells were investigated via a liquid chromatography/mass spectrometry (LC/MS)-based metabolomics approach. First, cell proliferation and apoptosis were evaluated using cell counting kit-8 (CCK-8), flow cytometry analysis, and western blotting. Then, LC/MS-based metabolic profiling along with orthogonal partial least-squares discriminant analysis (OPLS-DA) has been constructed to distinguish the metabolic changes between the negative control group and the PTL-treated group in TFK1 cells. Next, enzyme-linked immunosorbent assay (ELISA) was applied to investigate the changes of metabolic enzymes associated with significantly alerted metabolites. Finally, the metabolic network related to key metabolic enzymes, metabolites, and metabolic pathways was established using MetaboAnalyst 5.0 and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database. RESULTS: PTL treatment could induce the proliferation inhibition and apoptosis of TFK1 in a concentration-dependent manner. Forty-three potential biomarkers associated with the antitumor effect of PTL were identified, which primarily related to glutamine and glutamate metabolism, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arginine biosynthesis, arginine and proline metabolism, glutathione metabolism, nicotinate and nicotinamide metabolism, pyrimidine metabolism, fatty acid metabolism, phospholipid catabolism, and sphingolipid metabolism. Pathway analysis of upstream and downstream metabolites, we found three key metabolic enzymes, including glutaminase (GLS), γ-glutamyl transpeptidase (GGT), and carnitine palmitoyltransferase 1 (CPT1), which mainly involved in glutamine and glutamate metabolism, glutathione metabolism, and fatty acid metabolism. The changes of metabolic enzymes associated with significantly alerted metabolites were consistent with the levels of metabolites, and the metabolic network related to key metabolic enzymes, metabolites, and metabolic pathways was established. PTL may exert its antitumor effect against cholangiocarcinoma by disturbing metabolic pathways. Furthermore, we selected two positive control agents that are considered as first-line chemotherapy standards in cholangiocarcinoma therapy to verify the reliability and accuracy of our metabolomic study on PTL. CONCLUSION: This research enhanced our comprehension of the metabolic profiling and mechanism of PTL treatment on cholangiocarcinoma cells, which provided some references for further research into the anti-cancer mechanisms of other drugs.


Subject(s)
Cholangiocarcinoma , Sesquiterpenes , Male , Humans , Glutamine , Reproducibility of Results , Metabolomics/methods , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Cholangiocarcinoma/drug therapy , Arginine , Phenylalanine , Glutathione , Fatty Acids , Glutamates , Biomarkers
4.
Microb Pathog ; 190: 106614, 2024 May.
Article in English | MEDLINE | ID: mdl-38492825

ABSTRACT

Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1ß, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.


Subject(s)
Aeromonas hydrophila , Antioxidants , Carps , Eleutherococcus , Fermentation , Fish Diseases , Lacticaseibacillus rhamnosus , Probiotics , Animals , Lacticaseibacillus rhamnosus/metabolism , Carps/microbiology , Probiotics/pharmacology , Probiotics/administration & dosage , Antioxidants/metabolism , Fish Diseases/prevention & control , Fish Diseases/microbiology , Fish Diseases/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/immunology , Animal Feed , Inflammation/prevention & control , Cytokines/metabolism , Aquaculture
5.
Ying Yong Sheng Tai Xue Bao ; 35(1): 219-228, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38511459

ABSTRACT

Salinization environment affects the normal growth and development of plants, as well as the microbial community in the rhizosphere. To explore the succession dynamics of bacterial communities in the rhizosphere soil of Bletilla striata under salt stress condition, we performed 16S rRNA high-throughput sequencing to determine the bacterial community composition and diversity of B. striata in the rhizosphere under different salt stress concentrations, measured the effects of salt stress on the growth and development of B. striata and soil physicochemical pro-perties, and analyzed the correlation between community composition of rhizosphere bacteria and the soil environmental factors. The results showed that compared with the control, salt stress reduced growth rate and health degree of B. striata, and significantly decreased the content of soil organic matter, nitrogen and phosphorus. Under the salt stress treatment, species diversity and evenness of the bacterial communities in the rhizosphere of B. striata showed a trend of first decreasing and then increasing. There were significant differences in the relative abundance and variation trends of the dominant bacterial taxa in the rhizosphere soil of B. striata at the phylum and class levels between the control and the salt stress treatments. Salt stress intensity and duration were important factors affecting bacterial community composition in the rhizosphere soil of B. striata. Soil organic matter, available nitrogen, and total phosphorus content were key environmental factors affecting the structure of rhizosphere bacterial community composition. Functional genes related to cytoskeleton, cell motility, substance metabolism and signal transduction mechanisms may be involved in the adaptation and stress response of bacterial communities to salt stress. This study would provide theoretical basis and reference for the cultivation management of B. striatain saline area.


Subject(s)
Rhizosphere , Soil , Soil/chemistry , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Salt Stress , Nitrogen , Phosphorus , Soil Microbiology
6.
Food Funct ; 15(5): 2616-2627, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38356413

ABSTRACT

We previously reported that fish oil plus vitamin D3 (FO + D) could ameliorate nonalcoholic fatty liver disease (NAFLD). However, it is unclear whether the beneficial effects of FO + D on NAFLD are associated with gut microbiota and fecal metabolites. In this study, we investigated the effects of dietary supplementation of FO + D on gut microbiota and fecal metabolites and their correlation with NAFLD risk factors. Methods: A total of 61 subjects were randomly divided into three groups: FO + D group (2.34 g day-1 of eicosatetraenoic acid (EPA) + docosahexaenoic acid (DHA) + 1680 IU vitamin D3), FO group (2.34 g day-1 of EPA + DHA), and corn oil (CO) group (1.70 g d-1 linoleic acid). Blood and fecal samples were collected at the baseline and day 90. Gut microbiota were analyzed through 16S rRNA PCR analysis, and fecal co-metabolites were determined via untargeted ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Results: The relative abundance of Eubacterium (p = 0.03) and Lactobacillus (p = 0.05) increased, whereas that of Streptococcus (p = 0.02) and Dialister (p = 0.04) decreased in the FO + D group compared with the CO group. Besides, changes in tetracosahexaenoic acid (THA, C24:6 n-3) (p = 0.03) levels were significantly enhanced, whereas 8,9-DiHETrE levels (p < 0.05) were reduced in the FO + D group compared with the CO group. The changes in 1,25-dihydroxyvitamin D3 levels in the fecal samples were inversely associated with insulin resistance, which was determined using the homeostatic model assessment model (HOMA-IR, r = -0.29, p = 0.02), and changes in 8,9-DiHETrE levels were positively associated with adiponectin levels (r = -0.43, p < 0.05). Conclusion: The present results indicate that the beneficial effects of FO + D on NAFLD may be partially attributed to the impact on gut microbiota and fecal metabolites.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Humans , Fish Oils/pharmacology , Cholecalciferol/pharmacology , RNA, Ribosomal, 16S , Vitamin D/pharmacology , Dietary Supplements
7.
Int J Biol Macromol ; 261(Pt 1): 129674, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280710

ABSTRACT

The pro-tumorigenic M2-type tumor-associated macrophages (TAMs) in the immunosuppressive tumor microenvironment (TME) promote the progression, angiogenesis, and metastasis of breast cancer. The repolarization of TAMs from an M2-type toward an M1-type holds great potential for the inhibition of breast cancer. Here, we report that Lycium barbarum polysaccharides (LBPs) can significantly reconstruct the TME by modulating the function of TAMs. Specifically, we separated four distinct molecular weight segments of LBPs and compared their repolarization effects on TAMs in TME. The results showed that LBP segments within 50-100 kDa molecular weight range exhibited the prime effect on the macrophage repolarization, augmented phagocytosis effect of the repolarized macrophages on breast cancer cells, and regression of breast tumor in a tumor-bearing mouse model. In addition, RNA-sequencing confirms that this segment of LBP displays an enhanced anti-breast cancer effect through innate immune responses. This study highlights the therapeutic potential of LBP segments within the 50-100 kDa molecular weight range for macrophage repolarization, paving ways to offer new strategies for the treatment of breast cancer.


Subject(s)
Drugs, Chinese Herbal , Lycium , Neoplasms , Mice , Animals , Tumor-Associated Macrophages , Molecular Weight , Drugs, Chinese Herbal/pharmacology , Macrophages , Tumor Microenvironment , Neoplasms/pathology
8.
Altern Ther Health Med ; 30(1): 44-50, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37773677

ABSTRACT

This study employs network pharmacology to uncover the pharmacological mechanisms underlying Shen-qi-di-huang decoction's efficacy in treating uremia. We identified a total of 927 differentially expressed genes (DEGs) through differential expression analysis and the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and analysis platform, of which 607 were downregulated and 320 were upregulated. We also obtained the effective biological components and related target gene information of Chinese herbal medicines such as Renshen, Huangqi, shudihuang, Shanyao, Fuling, Mudanpi, and Shanzhuyu in Shen-qi-di-huang decoction and constructed a regulatory relationship network between molecular components and target genes in Shen-qi-di-huang decoction. We then constructed a protein-protein interaction (PPI) network of 15 targeted genes (RXRA, ND6, CYP1B1, SLPI, CDKN1A, RB1, HIF1A, MYC, HSPB1, IFNGR1, NQO1, IRF1, RASA1, PSMG1 and MAP2K4) using the STRING database and visualized the PPI network using the software Cytoscape. In addition, we revealed the key molecular functions of uremia through Gene Ontology (GO) enrichment analysis, mainly including neuron apoptotic process, cellular response to oxidative stress, regulation of neuron apoptotic process, neuron projection cytoplasm, RNA polymerase II transcription regulator complex, plasma membrane bounded cell projection cytoplasm, NADH and NADPH dehydrogenase (quinone) activity, protein kinase inhibitor and ubiquitin protein ligase binding, etc. Finally, we identified important biological pathways in uremia through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, which mainly concentrated in Kaposi sarcoma-associated, small cell lung cancer, Gastric cancer, Hepatitis B and C, Hepatocellular carcinoma, Thyroid cancer, Bladder cancer, MAPK signaling pathway, ErbB signaling pathway, Th17 cell differentiation, HIF-1 signaling pathway, Thyroid hormone signaling pathway and Cell cycle, etc. Using integrated bioinformatical analysis, we elucidated key pharmacological mechanisms based on targeted genes, which was enable early identification of patients with uremia and would contribute to early clinical diagnosis and treatment of patients.


Subject(s)
Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , Humans , Network Pharmacology , Signal Transduction , Apoptosis , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , p120 GTPase Activating Protein
9.
J Nutr Biochem ; 123: 109484, 2024 01.
Article in English | MEDLINE | ID: mdl-37866428

ABSTRACT

n-3 polyunsaturated fatty acids (PUFA) have shown to exert beneficial effects in the treatment of nonalcoholic fatty liver disease (NAFLD). Supplements of n-3 PUFA occur in either phospholipid or triacylglycerol form. The present study aimed to compare whether the different n-3 PUFA of marine-origin, namely krill oil, DHA/EPA-phospholipid (PL), and EPA/DHA-triacylglycerol (TAG) forms had differential abilities to ameliorate NAFLD. The NAFLD model was established in mice fed a high-fat and high-cholesterol diet (HFD). The mice showed evidence of weight gain, dyslipidemia, insulin resistance and hepatic steatosis after 9 weeks of HFD, while the three forms of the n-3 PUFA reduced hepatic TAG accumulation, fatty liver and improved insulin instance, and hepatic biomarkers after 9 weeks of intervention. Of these, krill oil intervention significantly reduced adipocyte hypertrophy and hepatic steatosis in comparison with DHA/EPA-PL and EPA/DHA-TAG groups. Importantly, only krill oil intervention significantly reduced serum alanine transaminase, aspartate transaminase concentrations and low-density lipoprotein-cholesterol, compared with the HFD group. Supplemental n-3 PUFA lowered circulating anandamide (AEA) and 2-arachidonoylglycerol (2-AG) concentrations, compared with the HFD group, which was associated with down-regulating CB1 and upregulating adiponectin expressions in adipose tissue. Besides, targeted lipidomic analyses indicated that the increased adiponectin levels were accompanied by reductions in hepatic ceramide levels. The reduced ceramide levels were associated with inhibiting lipid synthesis and increasing fatty acid ß-oxidation, finally inhibiting TAG accumulation in the liver. Through mediating CB1/adiponectin/ceramide pathway, the present study suggested that administration of krill oil had superior health effects in the therapy of NAFLD in comparison with DHA/EPA-PL and EPA/DHA-TAG.


Subject(s)
Fatty Acids, Omega-3 , Non-alcoholic Fatty Liver Disease , Mice , Animals , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Omega-3/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Phospholipids/metabolism , Adiponectin/metabolism , Triglycerides/metabolism , Eicosapentaenoic Acid/metabolism , Docosahexaenoic Acids/metabolism , Liver/metabolism , Fatty Acids, Unsaturated/metabolism , Cholesterol/metabolism , Receptors, Cannabinoid/metabolism , Fatty Acids/metabolism
10.
Zhen Ci Yan Jiu ; 48(12): 1266-1273, 2023 Dec 25.
Article in English, Chinese | MEDLINE | ID: mdl-38146250

ABSTRACT

OBJECTIVES: To compare the effects of 2 Hz continuous wave and 2 Hz/100 Hz dilatational wave setting in electroacupuncture(EA) on ovulation frequency, hormone levels, body fat parameters, quality of life and depression-anxiety level in polycystic ovary syndrome (PCOS) patients with abdominal obesity. METHODS: PCOS patients with abdominal obesity were randomly divided into low-frequency group (n=29) and dilatational wave group (n=29). Patients in both groups were treated with "Tongtiaodaimai" (regulating Dai Meridian) acupuncture therapy, and EA was applied to bilateral Daimai (GB26), Tianshu (ST25), Shenshu (BL23) and Ciliao (BL32). The low-frequency group received EA using a continuous wave at a frequency of 2 Hz, while the dilatational wave group received dilatational wave at a frequency of 2 Hz/100 Hz. Both groups received treatment for 30 min each time, 3 times per week for 12 consecutive weeks. Ovulation frequency was calculated according to the ovulation cycle. The contents of serum anti-Mullerian hormone (AMH) and sex hormone binding globulin (SHBG) were detected with electrochemiluminescence method. Body weight (BW) and waist circumference (WC) were measured, and body mass index (BMI) and waist-height ratio (WHtR) were calculated. PCOS questionnaire (Chi-PCOSQ), self-rating anxiety scale (SAS) and self-rating depression scale (SDS) were evaluated. RESULTS: Compared with before treatment, both the low-frequency group and the dilatational wave group showed an increase in ovulation frequency (P<0.01, P<0.05), and a decrease in BW, BMI, WC, WHtR, and SDS score (P<0.01, P<0.05);the dilatational wave group showed decreased serum AMH contents (P<0.05) and increased serum SHBG contents (P<0.05), the scores related to acne, fatigue, and dysmenorrhea in the Chi-PCOSQ increased (P<0.01, P<0.05). Compared with the low-frequency group, the dilatational wave group showed a reduction (P<0.05) in WC after treatment. CONCLUSIONS: 2 Hz/100 Hz dilatational wave EA is equally effective as 2 Hz low-frequency EA in improving ovulation frequency. In terms of reducing WC in abdominal obesity type PCOS patients, 2 Hz/100 Hz dilatational wave EA is superior to 2 Hz low-frequency EA. 2 Hz/100 Hz dilatational wave EA can decrease serum AMH, increase serum SHBG, and improve symptoms of acne, fatigue, and dysmenorrhea.


Subject(s)
Acne Vulgaris , Electroacupuncture , Polycystic Ovary Syndrome , Female , Humans , Obesity, Abdominal/therapy , Quality of Life , Polycystic Ovary Syndrome/therapy , Dysmenorrhea , Acupuncture Points , Obesity/therapy
11.
Front Pharmacol ; 14: 1275041, 2023.
Article in English | MEDLINE | ID: mdl-37908974

ABSTRACT

Triterpenoid saponins from Stauntonia chinensis have been proven to be a potential candidate for inflammatory pain relief. Our pharmacological studies confirmed that the analgesic role of triterpenoid saponins from S. chinensis occurred via a particular increase in the inhibitory synaptic response in the cortex at resting state and the modulation of the capsaicin receptor. However, its analgesic active components and whether its analgesic mechanism are limited to this are not clear. In order to further determine its active components and analgesic mechanism, we used the patch clamp technique to screen the chemical components that can increase inhibitory synaptic response and antagonize transient receptor potential vanilloid 1, and then used in vivo animal experiments to evaluate the analgesic effect of the selected chemical components. Finally, we used the patch clamp technique and molecular biology technology to study the analgesic mechanism of the selected chemical components. The results showed that triterpenoid saponins from S. chinensis could enhance the inhibitory synaptic effect and antagonize the transient receptor potential vanilloid 1 through different chemical components, and produce central and peripheral analgesic effects. The above results fully reflect that "traditional Chinese medicine has multi-component, multi-target, and multi-channel synergistic regulation".

12.
Food Res Int ; 173(Pt 2): 113473, 2023 11.
Article in English | MEDLINE | ID: mdl-37803796

ABSTRACT

This study aimed to hydrolyze soy isolate protein (SPI) using five enzymes (alcalase, pepsin, trypsin, papain, and bromelain) in order to obtain five enzymatic hydrolysates and to elucidate the effect of enzymes on structural and biological activities of the resulting hydrolysates. The antioxidant and hypoglycemic activities of the soy protein isolate hydrolysates (SPIEHs) were evaluated through in silico analysis, revealing that the alcalase hydrolysate exhibited the highest potential, followed by the papain and bromelain hydrolysates. Subsequently, the degree of hydrolysis (DH), molecular weight distribution (MWD), amino acid composition, structure, antioxidant activities, and hypoglycemic activity in vitro of SPIEHs were analyzed. After enzymatic treatment, the particle size, polymer dispersity index (PDI), ζ-potentials, ß-sheet content and α-helix content of SPIEHs was decreased, and the maximum emission wavelength of all SPIEHs exhibited red-shifted, which all suggesting the structure of SPIEHs was unfolded. More total amino acids (TAAs), aromatic amino acids (AAAs), and hydrophobic amino acids (HAAs) were found in alcalase hydrolysate. For 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, metal ion chelating activity, α-glucosidase inhibitory activity and α-amylase inhibitory activity, alcalase hydrolysate had the lowest IC50; alcalase hydrolysate and papain hydrolysate had the lowest IC50 for hydroxyl radical scavenging activity. Physiological activity of SPIEHs was evaluated thoroughly by 5-Axe cobweb charts, and the results revealed that alcalase hydrolysate exhibited the greatest biological activities.


Subject(s)
Antioxidants , Bromelains , Antioxidants/pharmacology , Antioxidants/chemistry , Glycine max/metabolism , Papain/chemistry , Protein Hydrolysates/chemistry , Soybean Proteins , Amino Acids , Subtilisins/chemistry
13.
Zhongguo Zhen Jiu ; 43(10): 1209-16, 2023 Oct 12.
Article in Chinese | MEDLINE | ID: mdl-37802530

ABSTRACT

OBJECTIVE: To assess the methodological quality, report quality and evidence quality of the Meta-analysis and systematic reviews of acupuncture and moxibustion for children with cerebral palsy, aiming to provide decision-making basis for clinical treatment. METHODS: The systematic reviews and Meta-analysis of acupuncture and moxibustion for children with cerebral palsy were searched in CNKI, Wanfang, VIP, SinoMed, Cochrane Library, PubMed and EMbase. The retrieval time was from the database establishment to June 30th, 2022. AMSTAR 2 (a measurement tool to assess systematic reviews) was used to evaluate the methodological quality, and PRISMA (preferred reporting items for systematic reviews and Meta-analyses) was used to evaluate the report quality, and GRADE was used to evaluate the quality of evidence. RESULTS: A total of 14 systematic reviews were included, including 37 primary outcome indexes. According to AMSTAR 2 evaluation results, there were 4 low quality studies, 10 very low quality studies, and low scores on items 2, 4, 7, 10 and 16. PRISMA scores ranged from 15 to 25, and the main reporting problems reflected in structured abstracts, program and registration, retrieval, and funding sources, etc. According to the GRADE classification results, there were 3 high quality evidences, 7 medium quality evidences, 10 low quality evidences and 17 very low quality evidences. The main downgrading factors were limitations, imprecision and publication bias. CONCLUSION: Acupuncture and moxibustion has a certain effect for cerebral palsy in children, but the quality of methodology, reporting and evidence in the included literature is poor, and the comparison of curative effect between different acupuncture and moxibustion methods is unclear.


Subject(s)
Acupuncture Therapy , Cerebral Palsy , Moxibustion , Child , Humans , Acupuncture Therapy/methods , Cerebral Palsy/therapy , Moxibustion/methods , Publication Bias , Research Report , Systematic Reviews as Topic , Meta-Analysis as Topic
14.
Int J Nanomedicine ; 18: 4275-4311, 2023.
Article in English | MEDLINE | ID: mdl-37534056

ABSTRACT

Breast cancer (BC) is the most prevalent type of cancer in the world and the main reason women die from cancer. Due to the significant side effects of conventional treatments such as chemotherapy and radiotherapy, the search for supplemental and alternative natural drugs with lower toxicity and side effects is of interest to researchers. Curcumin (CUR) is a natural polyphenol extracted from turmeric. Numerous studies have demonstrated that CUR is an effective anticancer drug that works by modifying different intracellular signaling pathways. CUR's therapeutic utility is severely constrained by its short half-life in vivo, low water solubility, poor stability, quick metabolism, low oral bioavailability, and potential for gastrointestinal discomfort with high oral doses. One of the most practical solutions to the aforementioned issues is the development of targeted drug delivery systems (TDDSs) based on nanomaterials. To improve drug targeting and efficacy and to serve as a reference for the development and use of CUR TDDSs in the clinical setting, this review describes the physicochemical properties and bioavailability of CUR and its mechanism of action on BC, with emphasis on recent studies on TDDSs for BC in combination with CUR, including passive TDDSs, active TDDSs and physicochemical TDDSs.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Curcumin , Female , Humans , Curcumin/pharmacology , Breast Neoplasms/drug therapy , Drug Delivery Systems , Antineoplastic Agents/pharmacology , Solubility , Drug Carriers/chemistry
15.
Phytopathology ; 113(10): 1853-1866, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37311718

ABSTRACT

Plant secondary metabolites are well known for their biological functions in defending against pathogenic microorganisms. Tea saponin (TS), one type of secondary metabolite of the tea plant (Camellia sinensis), has been shown to be a valuable botanical pesticide. However, its antifungal activity in controlling the fungi Valsa mali, Botryosphaeria dothidea, and Alternaria alternata, which induce major diseases in apple (Malus domestica), has not been determined. In this study, we first determined that TS has higher inhibitory activity than catechins against the three types of fungi. We further utilized in vitro and in vivo assays to confirm that TS showed high antifungal activity against the three types of fungi, especially for V. mali and B. dothidea. In the in vivo assay, application of a 0.5% TS solution was able to restrain the fungus-induced necrotic area in detached apple leaves efficiently. Moreover, a greenhouse infection assay also confirmed that TS treatment significantly inhibited V. mali infection in leaves of apple seedlings. In addition, TS treatment activated plant immune responses by decreasing accumulation of reactive oxygen species and promoting the activity of pathogenesis-related proteins, including chitinase and ß-1,3-glucanase. This indicated that TS might serve as a plant defense inducer to activate innate immunity to fight against fungal pathogen invasion. Therefore, our data indicated that TS might restrain fungal infection in two ways, by directly inhibiting the growth of fungi and by activating plant innate defense responses as a plant defense inducer.


Subject(s)
Malus , Malus/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Plant Proteins/metabolism , Plant Diseases/microbiology , Tea/metabolism
16.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2387-2395, 2023 May.
Article in Chinese | MEDLINE | ID: mdl-37282868

ABSTRACT

As a traditional Chinese herb and functional food, the fruits of Lycium barbarum has been widely used for thousands of years in China. L. barbarum polysaccharides(LBPs) are predominant active components, which have immunomodulatory, antioxidant, hypoglycemic, neuroprotective, anti-tumor, and prebiotic activities. The molecular weight, monosaccharide composition, glycosidic bond, branching degree, protein content, chemical modification, and spatial structure of LBPs are closely related to their biological activity. Based on the previous studies of this research team, this paper systematically combed and integrated the research progress of structure, function, and structure-activity relationship of LBPs. At the same time, some problems restricting the clarification of the structure-activity relationship of LBPs were considered and prospected, hoping to provide references for the high value utilization of LBPs and in-depth exploration of their health value.


Subject(s)
Antineoplastic Agents , Drugs, Chinese Herbal , Lycium , Lycium/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Structure-Activity Relationship , Antioxidants/pharmacology , Polysaccharides/pharmacology , Polysaccharides/chemistry
17.
Zhen Ci Yan Jiu ; 48(4): 325-30, 2023 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-37186195

ABSTRACT

OBJECTIVE: To explore the effect of electroacupuncture (EA) on sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP)/ SREBP-2 signaling and the expressions of its downstream cholesterol metabolism related molecules 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), proprotein convertase subtilisin/kexin type 9 (PCSK9), and low-density lipoprotein receptor (LDLR) in the liver tissue in rats with hyperlipidemia (HLP), so as to reveal its mechanisms underlying improvement of HLP. METHODS: Male SD rats were randomly divided into normal control, HLP model and EA groups (n=10/group). The HLP model was established by feeding the rats with high-fat diet for 28 d. Rats in the EA group received EA stimulation (2 Hz/100 Hz, 2 mA) at "Fenglong" (ST40) and "Yinlingquan"(SP9) for 30 min, once daily for 28 d. The contents of total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) in the serum, the activity of glutamic oxaloacetic transaminase (AST) and glutamic pyruvic transaminase (ALT) were detected by automatic biochemical analysis. The content of TC in the liver tissue was detected using high performance liquid chromatography. The mRNA and protein expression levels of SCAP, SREBP-2, HMGCR, PCSK9 and LDLR in the liver tissue were measured by using quantitative real-time PCR and Western blot, respectively. The immunofluorescence density of liver SCAP was determined by using immunofluorescence histochemistry. RESULTS: Compared with the normal control group, the contents of liver TC, serum TC, LDL-C, the activities of AST and ALT, and the mRNA and protein expression levels of SCAP, SREBP-2, HMGCR, PCSK9 as well as SCAP immunoactivity were significantly increased (P<0.01), while the LDLR mRNA and protein levels were markedly decreased (P<0.01) in the model group. In comparison with the model group, the contents of liver TC, serum TC, LDL-C, the activities of AST and ALT and the expression of SCAP, SREBP-2, HMGCR, PCSK9 mRNAs and proteins and SCAP immunoactivity were considerably decreased in the EA group (P<0.01), while the LDLR protein level was evidently increased in the EA group (P<0.05). CONCLUSION: EA intervention can inhibit the synthesis of cholesterol in the liver and thus improve hyperlipidemia in HLP rats, which may be realized by down-regulating the protein and mRNA expressions of hepatic SCAP/SREBP-2, HMGCR and PCSK9, and up-regulating LDLR protein.


Subject(s)
Electroacupuncture , Hyperlipidemias , Metabolic Diseases , Animals , Male , Rats , Cholesterol/metabolism , Cholesterol, LDL/metabolism , Hyperlipidemias/genetics , Hyperlipidemias/therapy , Liver , Metabolic Diseases/metabolism , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Rats, Sprague-Dawley , RNA, Messenger/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism
18.
Zhongguo Zhen Jiu ; 43(5): 537-44, 2023 May 12.
Article in Chinese | MEDLINE | ID: mdl-37161807

ABSTRACT

OBJECTIVE: To explore the effect of "Zhibian" (BL 54)-to-"Shuidao" (ST 28) needle insertion on the ovarian function in the rats with primary ovarian insufficiency (POI) and the potential effect mechanism based on the Fas/FADD/Caspase-8 of death receptor pathway. METHODS: Forty-eight female SD rats were randomly divided into a blank group, a model group, a medication group and an acupuncture group, with 12 rats in each group. Except in the blank group, the rats in the other groups were intraperitoneally injected with cyclophosphamide to establish the POI model. In the acupuncture group, after successful modeling, the intervention was given with "Zhibian" (BL 54)-to- "Shuidao" (ST 28) needle insertion, once daily, 30 min in each intervention; and the duration of intervention was 4 weeks. In the medication group, estradiol valerate tablets were administered intragastrically, 0.09 mg•kg-1•d-1, for 4 weeks. The general situation and the estrous cycle of the rats were compared among groups. Using ELISA, the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) in the serum were detected. HE staining was adopted to observe the morphological changes of ovarian tissue of rats. The protein expression of Fas, FADD and Caspase-8 in ovarian tissue was detected with immunohistochemistry and Western blot. RESULTS: After modeling, except the rats of the blank group, the rats of the other groups had dry fur, lost hair, low spirits, reduced food intake, increased urination and loose stool. After intervention, the stool became regular gradually in the acupuncture group and the medication group. The percentage of estrous cycle disturbance was increased in the rats of the model group when compared with the blank group (P<0.01); in comparison with the model group, the percentages of estrous cycle disturbance were reduced in the acupuncture group and the medication group after intervention (P<0.01). When compared with the blank group, the body mass and E2 content in the serum were lower (P<0.01), the levels of FSH and LH in the serum and the protein expression levels of Fas, FADD and Caspase-8 were increased (P<0.01) in the model group. Compared with the model group, the body mass and E2 contents in the serum were higher (P<0.01), the levels of FSH and LH in the serum and the protein expression levels of Fas, FADD and Caspase-8 were reduced (P<0.01) in the acupuncture group and the medication group. CONCLUSION: "Zhibian" (BL 54)-to-"Shuidao" (ST 28) needle insertion can effectively improve the ovarian function of POI rats, and its effect mechanism may be related to regulating the serum sex hormone levels, reducing the expression of Fas, FADD and Caspase-8 in ovarian tissue and retarding apoptosis of ovarian cells.


Subject(s)
Signal Transduction , Female , Animals , Rats , Needles , Receptors, Death Domain/metabolism
19.
Proc Natl Acad Sci U S A ; 120(19): e2215590120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126693

ABSTRACT

Chronic stress induces depression- and anxiety-related behaviors, which are common mental disorders accompanied not only by dysfunction of the brain but also of the intestine. Activating transcription factor 4 (ATF4) is a stress-induced gene, and we previously show that it is important for gut functions; however, the contribution of the intestinal ATF4 to stress-related behaviors is not known. Here, we show that chronic stress inhibits the expression of ATF4 in gut epithelial cells. ATF4 overexpression in the colon relieves stress-related behavioral alterations in male mice, as measured by open-field test, elevated plus-maze test, and tail suspension test, whereas intestine-specific ATF4 knockout induces stress-related behavioral alterations in male mice. Furthermore, glutamatergic neurons are inhibited in the paraventricular thalamus (PVT) of two strains of intestinal ATF4-deficient mice, and selective activation of these neurons alleviates stress-related behavioral alterations in intestinal ATF4-deficient mice. The highly expressed gut-secreted peptide trefoil factor 3 (TFF3) is chosen from RNA-Seq data from ATF4 deletion mice and demonstrated decreased in gut epithelial cells, which is directly regulated by ATF4. Injection of TFF3 reverses stress-related behaviors in ATF4 knockout mice, and the beneficial effects of TFF3 are blocked by inhibiting PVT glutamatergic neurons using DREADDs. In summary, this study demonstrates the function of ATF4 in the gut-brain regulation of stress-related behavioral alterations, via TFF3 modulating PVT neural activity. This research provides evidence of gut signals regulating stress-related behavioral alterations and identifies possible drug targets for the treatment of stress-related behavioral disorders.


Subject(s)
Activating Transcription Factor 4 , Thalamus , Male , Animals , Mice , Activating Transcription Factor 4/metabolism , Thalamus/metabolism , Neurons/metabolism , Mice, Knockout , Colon/metabolism
20.
Zhongguo Zhen Jiu ; 43(4): 454-60, 2023 Apr 12.
Article in Chinese | MEDLINE | ID: mdl-37068824

ABSTRACT

OBJECTIVE: To explore the possible mechanism of acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) on premature ovarian insufficiency (POI) from the perspective of oxidative stress. METHODS: Sixty female SD rats were randomly divided into a blank group, a model group, a sham acupuncture group, a medication group, and an acupuncture group, 12 rats in each group. Except the blank group, the rats in the remaining groups were intraperitoneally injected with cyclophosphamide to establish the POI model. After the model was successfully established, the rats in the acupuncture group were treated with acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28), with a depth of about 12 mm, and the needle was retained for 30 min; the acupuncture was given once a day, for a total of 4 weeks. The rats in the sham acupuncture group were treated with blunt-head needle to tap the skin surface of "Zhibian" (BL 54), without penetrating the skin, once a day for 4 weeks. The rats in the medication group were treated with estradiol valerate by gastric gavage for 4 weeks. After the intervention, the level of reactive oxygen species (ROS) in the ovarian tissue was detected by fluorescence probe; the expression of c-Jun N-terminal kinase (JNK), forkhead box O1 (FoxO1), tumor suppressor gene protein 53 (p53) and p53 up-regulated modulator of apoptosis (Puma) mRNA and protein in ovarian tissue were detected by real-time fluorescence quantitative PCR and Western blot. RESULTS: Compared with the blank group, the level of ROS and the expression of JNK mRNA, p-JNK protein, FoxO1, p53, Puma mRNA and protein in the ovarian tissue in the model group were increased (P<0.01). Compared with the model group, the level of ROS and the expression of p-JNK protein, FoxO1, p53, Puma mRNA and protein in the ovarian tissue in the sham acupuncture group were slightly reduced, but the difference was not statistically significant (P>0.05). The level of ROS and the expression of JNK mRNA, p-JNK protein, FoxO1, p53, Puma mRNA and protein in the ovarian tissue in the acupuncture group and the medication group were reduced (P<0.01). CONCLUSION: Acupuncture at "Zhibian" (BL 54) through "Shuidao" (ST 28) could improve the level of oxidative stress, down-regulate the expression of apoptosis-related factors JNK, FoxO1, p53 and Puma induced by oxidative stress, and inhibit the premature failure of ovarian reserve function caused by apoptosis of ovarian granulosa cells in POI rats.


Subject(s)
Acupuncture Therapy , Primary Ovarian Insufficiency , Humans , Rats , Female , Animals , Rats, Sprague-Dawley , Reactive Oxygen Species , Tumor Suppressor Protein p53/genetics , Apoptosis Regulatory Proteins , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/therapy , Apoptosis , RNA, Messenger , Oxidative Stress , Acupuncture Points
SELECTION OF CITATIONS
SEARCH DETAIL