Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Control Release ; 367: 425-440, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295998

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by complex heterogeneity, high recurrence and metastasis rates, and short overall survival, owing to the lack of endocrine and targeted receptors, which necessitates chemotherapy as the major treatment regimen. Exosome-like nanovesicles derived from medicinal plants have shown great potential as novel biotherapeutics for cancer therapy by delivering their incorporated nucleic acids, especially microRNAs (miRNAs), to mammalian cells. In this study, we isolated exosome-like nanovesicles derived from B. javanica (BF-Exos) and investigated their influence and underlying molecular mechanisms in TNBC. We found that BF-Exos delivered 10 functional miRNAs to 4T1 cells, significantly retarding the growth and metastasis of 4T1 cells by regulating the PI3K/Akt/mTOR signaling pathway and promoting ROS/caspase-mediated apoptosis. Moreover, BF-Exos were shown to inhibit the secretion of vascular endothelial growth factor, contributing to anti-angiogenesis in the tumor microenvironment. In vivo, BF-Exos inhibited tumor growth, metastasis, and angiogenesis in breast tumor mouse models, while maintaining high biosafety. Overall, BF-Exos are considered promising nanoplatforms for the delivery of medicinal plant-derived nucleic acids, with great potential to be developed into novel biotherapeutics for the treatment of TNBC.


Subject(s)
Exosomes , MicroRNAs , Triple Negative Breast Neoplasms , Humans , Mice , Animals , MicroRNAs/therapeutic use , Brucea javanica , Phosphatidylinositol 3-Kinases/metabolism , Exosomes/metabolism , Vascular Endothelial Growth Factor A/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Mammals/metabolism , Tumor Microenvironment
2.
J Nanobiotechnology ; 21(1): 38, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36737778

ABSTRACT

Wound repair, along with skin appendage regeneration, is challenged by insufficient angiogenesis and neural regeneration. Therefore, promoting both proangiogenic and neuro-regenerative therapeutic effects is essential for effective wound repair. However, most therapeutic systems apply these strategies separately or ineffectively. This study investigates the performance of an all-in-one smart dressing (ASD) that integrates angiogenic functional materials and multiple biological factors within a light crosslinked hydrogel, forming a multi-functional dressing capable of facilitating simultaneous micro-vascularization and neural regeneration. The ASD uses a zeolite-imidazolate framework 67 with anchored vanadium oxide (VO2@ZIF-67) that allows for the on-demand release of Co2+ with fluctuations in pH at the wound site to stimulate angiogenesis. It can simultaneously release CXCL12, ligustroflavone, and ginsenoside Rg1 in a sustained manner to enhance the recruitment of endogenous mesenchymal stem cells, inhibit senescence, and induce neural differentiation to achieve in situ nerve regeneration. The ASD can stimulate rapid angiogenesis and nerve regeneration within 17 days through multiple angiogenic and neuro-regenerative cues within one dressing. This study provides a proof-of-concept for integrating functional nanomaterials and multiple complementary drugs within a smart dressing for simultaneous angiogenesis and neural regeneration.


Subject(s)
Mesenchymal Stem Cells , Skin , Humans , Wound Healing , Neovascularization, Pathologic , Bandages
SELECTION OF CITATIONS
SEARCH DETAIL