Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256044

ABSTRACT

Tyrosinase is vital in fruit and vegetable browning and melanin synthesis, crucial for food preservation and pharmaceuticals. We investigated 6'-O-caffeoylarbutin's inhibition, safety, and preservation on tyrosinase. Using HPLC, we analyzed its effect on mushroom tyrosinase and confirmed reversible competitive inhibition. UV_vis and fluorescence spectroscopy revealed a stable complex formation with specific binding, causing enzyme conformational changes. Molecular docking and simulations highlighted strong binding, enabled by hydrogen bonds and hydrophobic interactions. Cellular tests showed growth reduction of A375 cells with mild HaCaT cell toxicity, indicating favorable safety. Animal experiments demonstrated slight toxicity within safe doses. Preservation trials on apple juice showcased 6'-O-caffeoylarbutin's potential in reducing browning. In essence, this study reveals intricate mechanisms and applications of 6'-O-caffeoylarbutin as an effective tyrosinase inhibitor, emphasizing its importance in food preservation and pharmaceuticals. Our research enhances understanding in this field, laying a solid foundation for future exploration.


Subject(s)
Arbutin/analogs & derivatives , Caffeic Acids , Monophenol Monooxygenase , Tea , Animals , Molecular Docking Simulation , Pharmaceutical Preparations
2.
Chin Med ; 19(1): 9, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218825

ABSTRACT

Wu-tou decoction (WTD), a traditional Chinese medicine prescription, is used to treat rheumatoid arthritis (RA). It works by controlling intestinal flora and its metabolites, which in turn modulates the inflammatory response and intestinal barrier function. Small molecular compounds (SM) and polysaccharides (PS) were the primary constituents of WTD extract. In this work, a model of adjuvant-induced arthritis (AIA) in rats was established and treated with WTD, SM, and PS, respectively. 16S rRNA gene sequencing was used to examine the regulatory impact of the various groups on the disturbance of the gut flora induced by RA. Further, since PS cannot be absorbed into the blood, the influence of PS on the absorption and metabolism of SM was studied by examining their pharmacokinetic (PK) parameters of 23 active components in SM by UPLC-MS/MS. WTD was found to be more effective than PS and SM in alleviating arthritis in AIA rats, which may be related to changes in gut flora. The PK properties of 13 active compounds were altered after PS intervene. Based on the findings, PS may be able to manage the disruption of intestinal microbiota, enhance the intestinal environment of model animals, and hence influence SM absorption and metabolism.

3.
Drug Deliv ; 30(1): 2289846, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38069584

ABSTRACT

The conventional treatment methods used for the management of autoimmune diseases (ADs) have limited efficacy and also exhibit significant side effects. Thus, identification of novel strategies to improve the efficacy and safety of ADs treatment is urgently required. Overactivated immune response and oxidative stress are common characteristics associated with ADs. Polydopamine (PDA), as a polymer material with good antioxidant and photothermal conversion properties, has displayed useful application potential against ADs. In addition, PDA possesses good biosafety, simple preparation, and easy functionalization, which is conducive for the pharmacological development of PDA nanomaterials with clinical transformation prospects. Here, we have first reviewed the preparation of PDA, the different functional integration strategies of PDA-based biomaterials, and their potential applications in ADs. Next, the mechanism of action of PDA in ADs has been elaborated in detail. Finally, the application opportunities and challenges linked with PDA nanomaterials for ADs treatment are discussed. This review is contributed to design reasonable and effective PDA nanomaterials for the diagnosis and treatment of ADs.


Subject(s)
Nanostructures , Indoles/therapeutic use , Indoles/pharmacology , Polymers/pharmacology , Phototherapy
4.
Ecotoxicol Environ Saf ; 264: 115402, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37634481

ABSTRACT

Biodegradable mulch films are recognized as a promising substitute of polyethylene (PE) films to alleviate the "white pollution". Biodegradable mulch films with optimum degradation rates increase crop yield even compared to PE films. However, the mechanisms underlying this yield-increasing effect remains elusive. In this study, three biodegradable film treatments (BFM1, BFM2 and BFM3) and one PE film treatment (PFM) were used to evaluate their effects on soil and winter potatoes, and a partial least squares path model (PLS-PM) was constructed to investigate their relationships. The degradation rates of films under different treatments were ranked as BFM3 > BFM2 >BFM1 > PFM, and presented distinctive effects on soil properties and nutrients, structure of soil bacterial community, and yield traits of winter potatoes. The PLS-PM showed that mulch treatments affected potato yield through effects on soil properties (soil water and temperature) and soil nutrients (TOC, DOC, TN and NO3--N). The disintegration of the biodegradable films decreased soil water content and temperature, and reduced the loss of soil nutrients in the topsoil at the later growth stage of winter potatoes compared to PE films. Additionally, the elevated content of soil TN and NO3--N under treatment BFM1 may play a key role in its yield-increasing effect on potatoes compared to treatments PFM and BFM2. Thus, biodegradable mulch films with proper degradation rates regulate soil TN and NO3--N through their effects on soil water and temperature, and subsequently improve the yield of winter potatoes compared to PE mulch films.


Subject(s)
Biodegradable Plastics , Solanum tuberosum , Soil , Agriculture , Polyethylene , Water
5.
Comput Struct Biotechnol J ; 21: 2780-2791, 2023.
Article in English | MEDLINE | ID: mdl-37181660

ABSTRACT

Tumor targeting drug delivery is of significant importance for the treatment of triple negative breast cancer (TNBC) considering the presence of appreciable amount of tumor matrix and the absence of effective targets on the tumor cells. Hence in this study, a new therapeutic multifunctional nanoplatform with improved TNBC targeting ability and efficacy was constructed and used for therapy of TNBC. Specifically, curcumin loaded mesoporous polydopamine (mPDA/Cur) nanoparticles were synthesized. Thereafter, manganese dioxide (MnO2) and a hybrid of cancer-associated fibroblasts (CAFs) membranes as well as cancer cell membranes were sequentially coated on the surface of mPDA/Cur to obtain mPDA/Cur@M/CM. It was found that two distinct kinds of cell membranes were able to endow the nano platform with homologous targeting ability, thereby achieving accurate delivery of drugs. Nanoparticles gathered in the tumor matrix can loosen the tumor matrix via the photothermal effect mediated by mPDA to rupture the physical barrier of tumor, which is conducive to the penetration and targeting of drugs to tumor cells in the deep tissues. Moreover, the existence of curcumin, MnO2 and mPDA was able to promote the apoptosis of cancer cells by promoting increased cytotoxicity, enhanced Fenton-like reaction, and thermal damage, respectively. Overall, both in vitro and in vivo results showed that the designed biomimetic nanoplatform could significantly inhibit the tumor growth and thus provide an efficient novel therapeutic strategy for TNBC.

6.
Zhongguo Zhong Yao Za Zhi ; 48(3): 715-724, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872235

ABSTRACT

In this study, an established ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) method was combined with multivariate statistical analysis to investigate the commonality and difference of main chemical components in the medicinal parts of Paeonia lactiflora from different cultivars; in addition, a high performance liquid chromatography(HPLC) method was established to simultaneously determine the content of eight active components in Paeoniae Radix Alba. Non-targeted analysis was carried out by UPLC-Q-TOF-MS on a Waters ACQUITY UPLC BEH C_(18)(2.1 mm×100 mm, 1.7 µm) column with a gradient elution of 0.1% aqueous formic acid(A)-acetonitrile(B) as the mobile phase at a flow rate of 0.2 mL·min~(-1). The column temperature was 30 ℃, and an electrospray ionization source was used to acquire mass spectrometry data in positive and negative ion modes. According to the accurate molecular weight and fragment ion information provided by multi-stage mass spectrometry and by comparison with reference substances and literature reports, thirty-six identical components were identified in Paeoniae Radix Alba from different cultivars with positive and negative ion modes. In the negative ion mode, two groups of samples were well separated; specifically, seventeen components with significant differences in content were screened and identified, and one component unique in "Bobaishao" was obtained. Quantitative analysis was conducted by high-performance liquid chromatography(HPLC) on an Agilent HC-C_(18)(4.6 mm×250 mm, 5 µm) column with a gradient elution of 0.1% aqueous phosphoric acid(A)-acetonitrile(B) as the mobile phase at a flow rate of 1.0 mL·min~(-1). The column temperature was 30 ℃ and the detection wavelength was at 230 nm. An HPLC method was developed for the simultaneous determination of eight active components(gallic acid, oxypaeoniflorin, catechin, albiflorin, paeoniflorin, galloylpaeoniflorin, 1,2,3,4,6-O-pentagalloylglucose, benzoyl-paeoniflorin) in Paeoniae Radix Albaa from different cultivars. Satisfactory linearity was achieved within the investigated linear ranges and with fine coefficients(r>0.999 0), and the methodological investigation showed that the method had good precision, repeatability and stability. The mean recoveries were 90.61% to 101.7% with RSD of 0.12% to 3.6%(n=6). UPLC-Q-OF-MS provided a rapid and efficient qualitative analytical method for the identification of the chemical components in Paeoniae Radix Alba, and the developed HPLC method was simple, rapid and accurate, which could provide a scientific basis for the evaluation of the germplasm resources and herbal quality of Paeoniae Radix Alba from different cultivars.


Subject(s)
Paeonia , Chromatography, High Pressure Liquid , Acetonitriles
7.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4895-4907, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36164899

ABSTRACT

This study compared the transcriptome of Atractylodes lancea rhizome at different development stages and explored genes encoding the key enzymes of the sesquiterpenoid biosynthesis pathway. Specifically, Illumina NovaSeq 6000 was employed for sequencing the cDNA libraries of A. lancea rhizome samples at the growth stage(SZ), flowering stage(KH), and harvesting stage(CS), respectively. Finally, a total of 388 201 748 clean reads were obtained, and 16 925, 8 616, and 13 702 differentially expressed genes(DEGs) were identified between SZ and KH, KH and CS, and SZ and CS, separately. Among them, 53 genes were involved in the sesquiterpenoid biosynthesis pathways: 9 encoding 6 enzymes of the mevalonic acid(MVA) pathway, 15 encoding 7 enzymes of the 2-C-methyl-D-erythritol-4-phosphate(MEP) pathway, and 29 of sesquiterpenoid and triterpenoid biosynthesis pathway. Weighted gene co-expression network analysis(WGCNA) yielded 12 genes related to sesquiterpenoid biosynthesis for the SZ, 1 gene for the KH, and 1 gene for CS, and several candidate genes for sesquiterpenoid biosynthesis were discovered based on the co-expression network. This study laid a solid foundation for further research on the sesquiterpenoid biosynthesis pathway, analysis of the regulation mechanism, and mechanism for the accumulation of sesquiterpenoids in A. lancea.


Subject(s)
Atractylodes , Sesquiterpenes , Triterpenes , Atractylodes/genetics , Mevalonic Acid/metabolism , Rhizome/genetics , Sesquiterpenes/metabolism , Transcriptome , Triterpenes/metabolism
8.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2605-2613, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35718478

ABSTRACT

The purpose of this study is to establish a molecular method to identify Xanthii Fructus and two adulterants, the fruits of Xanthium mongolicum and X. italicum. Xanthii Fructus is the fruit of X. sibiricum, which is a Chinese herbal medicine used clinically to treat allergic rhinitis. The fruits of X. mongolicum and X. italicum have strong morphological similarities with Xanthii Fructus, while their safety of medication cannot be guaranteed. The genomes of X. sibiricum, X. mongolicum, and X. italicum were sequenced, which generated sequences of 2.21, 2.24, and 2.54 Gb, respectively. Based on the 76 specific contigs screened out by BLASTN and Bowtie 2, the corresponding primers were designed by Primer 5.0. Three pairs of primers with stable amplification efficiency and good reproducibility were screened out to establish a multiplex PCR method based on the PCR amplification results. Further, the annealing temperature, the amount of DNA template, the number of cycles, different DNA polymerases, and different PCR thermal cyclers were optimized. Fragments of 262 bp and 458 bp from X. sibiricum, 260, 454, and 927 bp from X. mongolicum, and 260 bp and 926 bp from X. italicum were amplified under the following conditions: the annealing temperature of 52 ℃, 35 cycles, 30 ng template DNA. Then, the established method was used to detect 18 samples of X. sibiricum, 17 samples of X. mongolicum, and 12 samples of X. italicum. The results showed that all the samples had positive results, which were consistent with the morphological identification results, thus proving the stability and reliability of the established method. Combining genome sequencing technology and multiplex PCR method to identify Xanthii Fructus and its adulterants can not only obtain the difference in genetic background but also facilitate the design of reliable primers. The multiplex PCR have high specificity and repeatability, providing a new method for the molecular identification of Xanthii Fructus.


Subject(s)
Fruit , Xanthium , Fruit/genetics , Multiplex Polymerase Chain Reaction , Reproducibility of Results , Xanthium/genetics
9.
J Pharm Biomed Anal ; 217: 114834, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35662012

ABSTRACT

Panax ginseng C. A. Mey. (Ginseng) is a famous Chinese medicine with tonifying middle and replenishing qi effects and has been applied for the treatment of spleen-qi deficiency for many years. However, its potential therapeutic mechanisms have not been thoroughly studied. In this study, the metabolomic technique was applied to explore the therapeutic effect of ginseng on the spleen-qi deficiency. A rat model of spleen-qi deficiency was generated via the fatigue swimming method. After 3 weeks of treatment with ginseng, the entire metabolic changes in rat serum were profiled by gas chromatography-mass spectroscopy (GC-MS). The metabolic profiles in serum taurine and hypotaurine metabolism significantly differed among groups, in which a total of 17 metabolites were identified. Ginseng reversed the metabolic changes in the difference involving some metabolic pathways. Among them, beta-alanine metabolism, taurine and hypotaurine metabolism, and the pentose phosphate pathway are the key metabolic pathways. The therapeutic effects of ginseng on spleen-qi deficiency rats could be achieved by regulating multiple metabolic pathways, metabolites can be used as potential biomarkers for the diagnosis and monitoring of spleen-qi deficiency.


Subject(s)
Panax , Animals , Gas Chromatography-Mass Spectrometry , Metabolomics/methods , Panax/chemistry , Qi , Rats , Spleen , Taurine
10.
Molecules ; 27(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35630799

ABSTRACT

Sesquiterpene lactones (STLs) from the cocklebur Xanthium sibiricum exhibit significant anti-tumor activity. Although germacrene A oxidase (GAO), which catalyzes the production of Germacrene A acid (GAA) from germacrene A, an important precursor of germacrene-type STLs, has been reported, the remaining GAOs corresponding to various STLs' biosynthesis pathways remain unidentified. In this study, 68,199 unigenes were studied in a de novo transcriptome assembly of X. sibiricum fruits. By comparison with previously published GAO sequences, two candidate X. sibiricum GAO gene sequences, XsGAO1 (1467 bp) and XsGAO2 (1527 bp), were identified, cloned, and predicted to encode 488 and 508 amino acids, respectively. Their protein structure, motifs, sequence similarity, and phylogenetic position were similar to those of other GAO proteins. They were most strongly expressed in fruits, according to a quantitative real-time polymerase chain reaction (qRT-PCR), and both XsGAO proteins were localized in the mitochondria of tobacco leaf epidermal cells. The two XsGAO genes were cloned into the expression vector for eukaryotic expression in Saccharomyces cerevisiae, and the enzyme reaction products were detected by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) methods. The results indicated that both XsGAO1 and XsGAO2 catalyzed the two-step conversion of germacrene A (GA) to GAA, meaning they are unlike classical GAO enzymes, which catalyze a three-step conversion of GA to GAA. This cloning and functional study of two GAO genes from X. sibiricum provides a useful basis for further elucidation of the STL biosynthesis pathway in X. sibiricum.


Subject(s)
Xanthium , Cloning, Molecular , Oxidoreductases/metabolism , Phylogeny , Plant Proteins/metabolism , Sesquiterpenes, Germacrane , Xanthium/genetics
11.
J Biomater Sci Polym Ed ; 33(11): 1398-1414, 2022 08.
Article in English | MEDLINE | ID: mdl-35321628

ABSTRACT

A novel non-leaching antibacterial bone cement has been developed and evaluated. An antibacterial furanone derivative was synthesized and covalently coated onto the surface of alumina filler particles, followed by mixing into a conventional poly(methyl methacrylate) bone cement. Flexural strength and bacterial viability were used to evaluate the modified cements. Effects of coated antibacterial moiety content, coated alumina filler particle size and loading were investigated. Results showed that almost all the modified cements showed higher flexural strength (up to 10%), flexural modulus (up to 18%), and antibacterial activity (up to 67% to S. aureus and up to 84% to E. coli), as compared to original poly(methyl methacrylate) cement. Increasing antibacterial moiety and filler loading significantly enhanced antibacterial activity. On the other hand, increasing coated filler particle size decreased antibacterial activity. Increasing antibacterial moiety content and particle size did not significantly affect flexural strength and modulus. Increasing filler loading did not significantly affect flexural modulus but reduced flexural strength. Antibacterial agent leaching tests showed that it seems no leachable antibacterial component from the modified experimental cement to the surrounding environment. Within the limitations of this study, the modified poly(methyl methacrylate) bone cement may potentially be developed into a clinically useful bone cement for reducing in-surgical and post-surgical infection.


Subject(s)
Bone Cements , Polymethyl Methacrylate , Aluminum Oxide , Anti-Bacterial Agents/pharmacology , Bone Cements/pharmacology , Escherichia coli , Flexural Strength , Materials Testing , Polymethyl Methacrylate/pharmacology , Staphylococcus aureus
12.
Front Endocrinol (Lausanne) ; 13: 1107071, 2022.
Article in English | MEDLINE | ID: mdl-36743913

ABSTRACT

Objective: As a metabolic disease, one important feature of non-alcoholic fatty liver disease (NAFLD) is the disturbance of the intestinal flora. Spleen-strengthening and liver-draining formula (SLF) is a formula formed according to the theory of "One Qi Circulation" (Qing Dynasty, 1749) of Traditional Chinese Medicine (TCM), which has shown significant therapeutic effect in patients with NAFLD in a preliminary clinical observation. In this study, we aim to explore the mechanism of SLF against NAFLD, especially its effect on glucolipid metabolism, from the perspective of intestinal flora. Methods: A prospective, randomized, controlled clinical study was designed to observe the efficacy and safety of SLF in the treatment of NAFLD. The study participants were randomly and evenly divided into control group and treatment group (SLF group). The control group made lifestyle adjustments, while the SLF group was treated with SLF on top of the control group. Both groups were participated in the study for 12 consecutive weeks. Furthermore, the feces of the two groups were collected before and after treatment. The intestinal flora of each group and healthy control (HC) were detected utilizing 16S rRNA gene sequencing. Results: Compared with the control group, the SLF group showed significant improvements in liver function, controlled attenuation parameter (CAP), and liver stiffness measurement (LSM), meanwhile, patients had significantly lower lipid and homeostasis model assessment of insulin resistance (HOMA-IR) with better security. Intestinal flora 16S rRNA gene sequencing results indicated reduced flora diversity and altered species abundance in patients with NAFLD. At the phylum level, Desulfobacterota levels were reduced. Although Firmicutes and Bacteroidetes did not differ significantly between HC and NAFLD, when grouped by alanine transaminase (ALT) and aspartate transaminase (AST) levels in NAFLD, Firmicutes levels were significantly higher in patients with ALT or AST abnormalities, while Bacteroidetes was significantly lower. Clinical correlation analysis showed that Firmicutes positively correlated with gender, age, ALT, AST, LSM, and Fibroscan-AST (FAST) score, while the opposite was true for Bacteroidetes. At the genus level, the levels of Alistipes, Bilophila, Butyricimonas, Coprococcus, Lachnospiraceae_NK4A136 group Phascolarctobacterium, Ruminococcus, UCG-002, and UCG-003 were reduced, whereas abundance of Tyzzerella increased. There was no statistically significant difference in Firmicutes and Bacteroidota levels in the SLF group before and after treatment, but both bacteria tended to retrace. At the genus level, Coprococcus (Lachnospiraceae family), Lachnospiraceae_NK4A136 group (Lachnospiraceae family), and Ruminococcus (Ruminococcaceae family) were significantly higher in the SLF group after treatment, and there was also a tendency for Bilophila (Desulfovibrionaceae family) to be back-regulated toward HC. Conclusions: SLF can improve liver function and glucolipid metabolism in patients with NAFLD and lower down liver fat content to some extent. SLF could be carried out by regulating the disturbance of intestinal flora, especially Coprococcus, Lachnospiraceae_NK4A136 group, and Ruminococcus genus.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Humans , Clostridiales , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/microbiology , RNA, Ribosomal, 16S , Spleen/metabolism , Drugs, Chinese Herbal/therapeutic use
13.
Chin Med ; 16(1): 120, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34801051

ABSTRACT

BACKGROUND: Weifuchun (WFC), a Chinese herbal prescription consisting of Red Ginseng, Isodon amethystoides and Fructus Aurantii, is commonly used in China to treat a variety of chronic stomach disorders. The aim of the paper was to determine the effect of WFC on intestinal microbiota changes in precancerous lesions of gastric cancer (PLGC) patients. METHODS: PLGC patients of H. pylori negative were randomly divided into two groups and received either WFC tablets for a dose of 1.44 g three times a day or vitacoenzyme (Vit) tablets for a dose of 0.8 g three times a day. All patients were treated for 6 months consecutively. Gastroscopy and histopathology were used to assess the histopathological changes in gastric tissues before and after treatment. 16S rRNA gene sequencing was carried out to assess the effects WFC on intestinal microbiota changes in PLGC patients. Receiver Operating Characteristics (ROC) analysis was used to assess the sensitivity and specificity of different intestinal microbiota in distinguishing between PLGC patients and healthy control group. RESULTS: Gastroscopy and histopathological results indicated that WFC could improve the pathological condition of PLGC patients, especially in the case of atrophy or intestinal metaplasia. The results of 16S rRNA gene sequencing indicated that WFC could regulate microbial diversity, microbial composition, and abundance of the intestinal microbiota of PLGC patients. Following WFC treatment, the relative abundance of Parabacteroides decreased in WFC group when compared with the Vit group. ROC analysis found that the Parabacteroides could effectively distinguish PLGC patients from healthy individuals with sensitivity of 0.79 and specificity of 0.8. CONCLUSIONS: WFC could slow down the progression of PLGC by regulating intestinal microbiota abundance. Trial registration NCT03814629. Name of registry: Randomized Clinical Trial: Weifuchun Treatment on Precancerous Lesions of Gastric Cancer. Registered 3 August 2018-Retrospectively registered, https://register.clinicaltrials.gov/ NCT03814629.

14.
Zhongguo Zhong Yao Za Zhi ; 46(8): 2020-2028, 2021 Apr.
Article in Chinese | MEDLINE | ID: mdl-33982515

ABSTRACT

Sesquiterpene lactones are a kind of widely distributed natural organic compounds with anti-tumor, anti-malarial and other significant biological activities. Based on their carbocylic skeletons, sesquiterpene lactones are classified into germacranolide, guaia-nolide, xanthanolide, pseudo-guaianolide, elemonolide and eudesmanolide, etc. In recent years, with the development of various omics and synthetic biology technologies, the biosynthetic pathways of sesquiterpene lactone compounds of different structural types have gradually been resolved. Among them, the researches on germacrene-derived sesquiterpene lactones are relatively more than others. Therefore, this article focused on the germacrene-derived sesquiterpene lactone biosynthesis pathways and their key enzyme genes, which can lay the foundation for in-depth analysis of sesquiterpene lactone biosynthetic pathways, functional gene mining and heterologous synthesis of active ingredients.


Subject(s)
Sesquiterpenes , Biosynthetic Pathways , Lactones
15.
Biomed Pharmacother ; 135: 111084, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33383371

ABSTRACT

BACKGROUND AND PURPOSE: Inflammation has been considered a precipitating event that contributes to neurocognitive dysfunction in minimal hepatic encephalopathy (MHE). Inhibition TLR-4 related inflammation can effectively improve neurocognitive dysfunction of MHE. Our previous study showed that Babao Dan (BBD) effectively inhibited inflammation and ameliorated neurocognitive function in rats with acute hepatic encephalopathy (HE) and chronic HE. The mechanism may lie in the regulation of TLR4 signaling pathway. Therefore, this study aimed to evaluate the role of BBD in the treatment of MHE patients with cirrhosis and to elucidate the underlying mechanism by which BBD regulated TLR4 pathway to alleviate inflammation. METHODS: A randomized controlled trial (n = 62) was conducted to evaluate the clinical efficacy between BBD plus lactulose (n = 31) and lactulose alone (n = 31) in MHE patients by testing neurocognitive function (NCT-A and DST), blood ammonia, liver function (ALT, AST and TBIL) and blood inflammation (IL-1ß, IL-6 and TNF-α). Afterward, we detected NO, inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and the phosphorylation of P65, JNK, ERK as well as P38 in LPS-activated rat primary bone marrow-derived macrophages (BMDMs), peritoneal macrophages (PMs), and mouse primary BMDMs/PMs/microglia/astrocytes, to investigate the underlying mechanism of BBD inhibiting inflammation through TLR4 pathway. Also, the survival rate of mice, liver function (ALT, AST), blood inflammation (IL-1ß, IL-6 and TNF-α), inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and histopathological changes in the liver, brain and lung were measured to assess the anti-inflammatory effect of BBD on neurocognitive function in endotoxin shock/endotoxemia mice. RESULTS: BBD combined with lactulose significantly ameliorated neurocognitive function by decreasing NCT-A (p<0.001) and increasing DST (p<0.001); inhibited systemic inflammation by decreasing IL-1ß (p<0.001), IL-6(p<0.001) and TNF-α (p<0.001); reduced ammonia level (p = 0.005), and improved liver function by decreasing ALT(p = 0.043), AST(p = 0.003) and TBIL (p = 0.026) in MHE patients. Furthermore, BBD inhibited gene and protein expression of IL-1ß, IL-6 and TNF-α as well as NO in rat primary BMDMs/PMs, and mouse primary BMDMs/PMs/microglia/astrocytes in a dose-dependent manner. BBD inhibited the activation of mouse primary BMDMs/PMs/microglia/astrocytes by regulating TLR4 pathway involving the phosphorylation of P65, JNK, ERK and P38. Also, BBD reduced the mortality of mice with endotoxin shock/endotoxemia; serum levels of ALT, AST, IL-1ß, IL-6 and TNF-α; gene expression of IL-1ß, IL-6 and TNF-α in the liver, brain and lung, and tissue damage in the liver and lung. CONCLUSION: Our study provided for the first time clinical and experimental evidence supporting the use of BBD in MHE, and revealed that BBD could play a crucial role in targeting and regulating TLR4 inflammatory pathway to improve neurocognitive function in MHE patients.


Subject(s)
Anti-Inflammatory Agents , Brain , Cognition , Cytokines , Drugs, Chinese Herbal , Hepatic Encephalopathy , Inflammation Mediators , Aged , Animals , Female , Humans , Male , Middle Aged , Pregnancy , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/therapeutic use , Astrocytes/drug effects , Astrocytes/metabolism , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Cells, Cultured , China , Cognition/drug effects , Cytokines/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/adverse effects , Drugs, Chinese Herbal/therapeutic use , Endotoxemia/drug therapy , Endotoxemia/metabolism , Hepatic Encephalopathy/drug therapy , Hepatic Encephalopathy/metabolism , Hepatic Encephalopathy/physiopathology , Hepatic Encephalopathy/psychology , Inflammation Mediators/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Time Factors , Toll-Like Receptor 4/metabolism , Treatment Outcome , Mice
16.
Front Pharmacol ; 11: 558471, 2020.
Article in English | MEDLINE | ID: mdl-33381024

ABSTRACT

Wei-Fu-Chun (WFC) tablet is a commercial medicinal product approved by China Food and Drug Administration, which is made of Panax ginseng C.A.Mey., Citrus aurantium L., and Isodon amethystoides (Benth.). WFC has been popularly used for the treatment of precancerous lesions of gastric cancer (PLGC) in clinical practice. In this study, a UHPLC-ESI-Q-TOF/MS method in both positive and negative ion mode was employed to rapidly survey the major constituents of WFC. 178 compounds including diterpenoids, triterpenes, sesquiterpenes, flavonoids, saponins, phenylpropanoids, lignans, coumarins, organic acids, fatty acids, quinones, and sterols, were identified by comparing their retention times, accurate mass within 5 ppm error, and MS fragmentation ions. In addition, 77 absorbed parent molecules and nine metabolites in rat serum were rapidly characterized by UHPLC-ESI-Q-TOF/MS. The network pharmacology method was used to predict the active components, corresponding therapeutic targets, and related pathways of WFC in the treatment of PLGC. Based on the main compounds in WFC and their metabolites in rat plasma and existing databases, 13 active components, 48 therapeutic targets, and 61 pathways were found to treat PLGC. The results of PLGC experiment in rats showed that WFC could improve the weight of PLGC rats and the histopathological changes of gastric mucosa partly by inhibiting Mitogen-activated protein kinase (MAPK) signaling pathway to increase pepsin secretion. This study offers an applicable approach to identify chemical components, absorbed compounds, and metabolic compounds in WFC, and provides a method to explore bioactive ingredients and action mechanisms of WFC.

17.
Molecules ; 25(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371407

ABSTRACT

The identification of aroma composition and key odorants contributing to aroma characteristics of white tea is urgently needed, owing to white tea's charming flavors and significant health benefits. In this study, a total of 238 volatile components were identified in the three subtypes of white teas using headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS). The multivariate statistical analysis demonstrated that the contents of 103 volatile compounds showed extremely significant differences, of which 44 compounds presented higher contents in Baihaoyinzhen and Baimudan, while the other 59 compounds exhibited higher contents in Shoumei. The sensory evaluation experiment carried out by gas chromatography-olfactometry/mass spectrometry (GC-O/MS) revealed 44 aroma-active compounds, of which 25 compounds were identified, including 9 alcohols, 6 aldehydes, 5 ketones, and 5 other compounds. These odorants mostly presented green, fresh, floral, fruity, or sweet odors. Multivariate analyses of chemical characterization and sensory evaluation results showed that high proportions of alcohols and aldehydes form the basis of green and fresh aroma characteristic of white teas, and phenylethyl alcohol, γ-Nonalactone, trans-ß-ionone, trans-linalool oxide (furanoid), α-ionone, and cis-3-hexenyl butyrate were considered as the key odorants accounting for the different aroma characteristics of the three subtypes of white tea. The results will contribute to in-depth understand chemical and sensory markers associated with different subtypes of white tea, and provide a solid foundation for tea aroma quality control and improvement.


Subject(s)
Flavoring Agents/chemistry , Odorants/analysis , Tea/chemistry , Acyclic Monoterpenes/chemistry , Aldehydes/chemistry , Cyclohexanols/chemistry , Fruit/chemistry , Gas Chromatography-Mass Spectrometry/methods , Norisoprenoids/chemistry , Solid Phase Microextraction/methods , Trityl Compounds/chemistry , Volatile Organic Compounds/chemistry
18.
Article in English | MEDLINE | ID: mdl-33082818

ABSTRACT

BACKGROUND: Acupuncture at Zusanli (ST36), Quchi (LI11), and Tianshu (ST25) is commonly used in septic patients by traditional Chinese physicians. The protective effect of acupuncture at ST36 on the intestinal barrier is associated with Cholinergic Anti-Inflammatory Pathway (CAIP). However, its detailed mechanism and whether acupuncture at LI11 and ST25 have similar effects to ST36 remain unclear. AIM: To explore the effects of electroacupuncture (EA) at ST36, LI11, and ST25 on septic rats and investigate the role of the spleen in the treatment of EA at ST36. METHODS: A septic rat model caused by cecal ligation and puncture (CLP) and a postsplenectomy (SPX) CLP rat model were established. Rats were divided into nine groups depending on different treatments. Serum levels of TNF-α, IL-10, D-lactic acidosis (D-LA), double amine oxidase (DAO), and T-lymphocyte subgroup level in intestinal lymph nodes were compared. RESULTS: EA could not improve the 2-day survival of CLP rats. For CLP rats, EA at ST36 and LI11 significantly decreased the levels of TNF-α, IL-10, DAO, and D-LA in serum and normalized intestinal T-cell immunity. For SPX CLP rats, EA at ST36 failed to reduce serum concentrations of TNF-α, IL-10, and D-LA but increased the values of CD3+CD4+/CD3+CD8+ cells and Treg/Th17 cells. CONCLUSIONS: EA at ST36 and LI11, respectively, could alleviate inflammation reaction, protect the intestinal barrier, and maintain intestinal T-cell function in septic rats. Spleen participated in the protective effect of EA at ST36 in sepsis.

19.
BMJ Open ; 10(9): e035346, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32948544

ABSTRACT

INTRODUCTION: Most of the patients who received arthroscopic knee surgery will suffer moderate to severe pain, which can delay the rehabilitation process and increase the risk of postoperative complications. Therefore, seeking a safe and effective postoperative analgesia is necessary for promoting the application of arthroscopic surgery. This protocol aims to detail a planned systematic review and meta-analysis on the comparative efficacy and safety of single-dose intra-articular injection of analgesics for pain relief after knee arthroscopy. METHOD AND ANALYSIS: PubMed, Embase, Web of Science and Cochrane Library will be searched from inception to 1 June 2020 to retrieve randomised controlled trials (RCTs) that compared the commonly used single-dose intra-articular analgesics (ie, morphine; bupivacaine (including levobupivacaine); ropivacaine and magnesium alone or in combination) with placebo or between each other for postoperative pain relief among patients who had received knee arthroscopy. The primary outcome is pain intensity at 2-hour and 24-hour postoperatively; the secondary outcomes include side effects (eg, knee effusion, nausea, vomiting and flushing), the number of patients requiring supplementary analgesia and the time to first analgesic request. The methodological quality of the included RCTs will be assessed based on the Cochrane risk of bias table. The Bayesian network meta-analysis will be conducted using WinBUGS V.1.4.3. ETHICS AND DISSEMINATION: Since no private or confidential patient data will be contained in the reporting, approval from an ethics committee is not required. Our study raises no ethical issue, and the results will be published in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER: CRD42019130876.


Subject(s)
Arthroscopy , Pain, Postoperative , Analgesics/therapeutic use , Analgesics, Opioid , Bupivacaine , Humans , Meta-Analysis as Topic , Morphine , Network Meta-Analysis , Pain, Postoperative/drug therapy
20.
Plant J ; 102(5): 931-947, 2020 06.
Article in English | MEDLINE | ID: mdl-31908046

ABSTRACT

Phytohormone brassinosteroids (BRs) are essential for plant growth and development, but the mechanisms of BR-mediated pollen development remain largely unknown. In this study, we show that pollen viability, pollen germination and seed number decreased in the BR-deficient mutant d^im , which has a lesion in the BR biosynthetic gene DWARF (DWF), and in the bzr1 mutant, which is deficient in BR signaling regulator BRASSINAZOLE RESISTANT 1 (BZR1), compared with those in wild-type plants, whereas plants overexpressing DWF or BZR1 exhibited the opposite effects. Loss or gain of function in the DWF or BZR1 genes altered the timing of reactive oxygen species (ROS) production and programmed cell death (PCD) in tapetal cells, resulting in delayed or premature tapetal degeneration, respectively. Further analysis revealed that BZR1 could directly bind to the promoter of RESPIRATORY BURST OXIDASE HOMOLOG 1 (RBOH1), and that RBOH1-mediated ROS promote pollen and seed development by triggering PCD and tapetal cell degradation. In contrast, the suppression of RBOH1 compromised BR signaling-mediated ROS production and pollen development. These findings provide strong evidence that BZR1-dependent ROS production plays a critical role in the BR-mediated regulation of tapetal cell degeneration and pollen development in Solanum lycopersicum (tomato) plants.


Subject(s)
Pollen/metabolism , Reactive Oxygen Species/metabolism , Solanum lycopersicum/metabolism , Apoptosis/genetics , Apoptosis/physiology , Brassinosteroids/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Solanum lycopersicum/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/physiology , Signal Transduction/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL