Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Complementary Medicines
Database
Language
Publication year range
1.
J Neuroendocrinol ; 29(6)2017 06.
Article in English | MEDLINE | ID: mdl-28425631

ABSTRACT

Prolactin is a pleiotropic peptide hormone produced by the lactotrophs in the anterior pituitary. Its rate of secretion is primarily regulated by a negative-feedback mechanism where prolactin stimulates the activity of the tuberoinfundibular dopaminergic (TIDA) neurones, increasing their release of dopamine, which accesses the pituitary via the median eminence to suppress further prolactin secretion. In addition to its well established role in lactation, circulating prolactin is secreted in response to stress, although the mechanism by which this is achieved or its cellular targets remains unknown. In the present study, we show that 15 minutes of restraint stress causes an approximately seven-fold increase in circulating prolactin concentration in male mice. Monitoring prolactin receptor activation, using immunohistochemistry to determine the level and distribution of tyrosine phosphorylated signal transducer and activator of transcription 5 (pSTAT5), we show that this stress-induced increase in prolactin interacts with both central and peripheral targets. Restraint stress for 15 minutes significantly increased pSTAT5 staining in the arcuate nucleus, median eminence and the zona fasciculata of the adrenal cortex. In each case, this response was prevented by pretreating the animals with bromocriptine to block prolactin secretion from the pituitary. Interestingly, in contrast to many cells in the arcuate nucleus, stress reduced pSTAT5 staining of the TIDA neurones (identified by dual-labelling for tyrosine hydroxylase). This suggests that there is reduced prolactin signalling in these cells and thus potentially a decline in their inhibitory influence on prolactin secretion. These results provide evidence that prolactin secreted in response to acute stress is sufficient to activate prolactin receptors in selected target tissues known to be involved in the physiological adaptation to stress.


Subject(s)
Adrenal Cortex/metabolism , Hypothalamus/metabolism , Prolactin/physiology , Restraint, Physical , STAT5 Transcription Factor/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Bromocriptine/pharmacology , Dopaminergic Neurons/metabolism , Male , Median Eminence/metabolism , Mice , Phosphorylation/physiology , Prolactin/antagonists & inhibitors , Prolactin/blood , Receptors, Prolactin/physiology
2.
J Neuroendocrinol ; 27(12): 872-86, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26442444

ABSTRACT

Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of growth hormone secretagogue receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release; however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad lib. fed male germline goat(-/-) mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat(-/-) mice compared to age-matched wild-type mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. Although loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of insulin-like growth factor (IGF)-1 were elevated in goat(-/-) mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat(-/-) mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. Although the biological relevance of altered GH secretory patterning remains unclear, we propose that this may contribute to sustained IGF-1 release and growth in goat(-/-) mice.


Subject(s)
Acyltransferases/deficiency , Acyltransferases/physiology , Growth Hormone/metabolism , Acyltransferases/genetics , Animals , Growth Hormone-Releasing Hormone/biosynthesis , Hypothalamus/metabolism , Insulin-Like Growth Factor I/metabolism , Male , Membrane Proteins , Mice , Mice, Knockout , Neuropeptide Y/biosynthesis , Receptors, Ghrelin/biosynthesis , Somatostatin/biosynthesis
3.
Endocrinology ; 153(1): 273-82, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22109889

ABSTRACT

Fasting results in the mobilization of adipose stores and the elevation of levels of free fatty acids (FFA). In humans, this process is driven by a release in GH. Little is known regarding the role of GH in modulating this process during early stages of fasting in the mouse. Confirmation of the role of GH in modulating FFA release in the fasting mouse is of particular importance given the frequent use of mouse models to study metabolic mechanisms. Here, we correlate the initial release of FFA throughout fasting in mice with pulsatile GH secretion. Observations illustrate the rapid release of FFA in response to food withdrawal. This does not correlate with a rise in GH secretion. Rather, we observed a striking loss in pulsatile secretion of GH throughout the first 6 h of fasting, suggesting that GH does not modulate the initial release of FFA in the mouse in response to fasting. This was confirmed in GH receptor knockout mice, in which we observed a robust fasting-induced rise in FFA. We further illustrate the dynamic relationship between the orexigenic and anorexigenic hormones ghrelin and leptin during fasting in the mouse. Our findings show an initial suppression of leptin and the eventual rise in circulating levels of acyl-ghrelin with fasting. However, altered acyl-ghrelin and leptin secretion occurs well after the rise in FFA and the suppression of GH secretion. Consequently, we conclude that although acyl-ghrelin and leptin may modulate the physiological response to drive food intake, these changes do not contribute to the initial loss of pulsatile GH secretion. Rather, it appears that the suppression of GH secretion in fasting may occur in response to an elevation in fasting levels of FFA or physiological stress. Observations highlight a divergent role for GH in modulating FFA release between man and mouse.


Subject(s)
Fasting/physiology , Fatty Acids, Nonesterified/metabolism , Growth Hormone/physiology , Animals , Corticosterone/blood , Fasting/blood , Fatty Acids, Nonesterified/blood , Gene Expression , Ghrelin/blood , Growth Hormone/blood , Growth Hormone/metabolism , Humans , Hypothalamus/physiology , Insulin-Like Growth Factor I/metabolism , Leptin/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Pituitary Gland/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Somatostatin/genetics , Receptors, Somatotropin/deficiency , Receptors, Somatotropin/genetics , Signal Transduction , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL